本文目录一览

1,什么是因式分解

你好!!! 因式分解(分解因式),把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。 祝你学业进步!!!
将高次方的未知数式子化成由几个低次式子相乘的式子

什么是因式分解

2,因式分解的概念

因式分解(分解因式)Factorization,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
将一个多项式以和的形式转化为多项式乘积的形式叫做因式分解
因式分解其实是整式乘法的逆运算。比如 a(a+b) = a2+ab ,(a+b)(a-b)=a2-b2 等等运算叫做整式乘法对吗?反过来的过程不就是因式分解?

因式分解的概念

3,什么叫做因式分解

因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

什么叫做因式分解

4,因式分解是什么意思

把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)分解公式平方差公式(a+b)(a-b)=a2-b2完全平方公式(a+b)2=a2+2ab+b2  (a-b)2=a2-2ab+b2十字相乘法公式x2+(a+b)x+ab=(x+a)(x+b)立方和(差)立方公式a3-b3=(a-b)(a2+ab+b2) (a+b)3 =a3+3a2b+3ab2+b3 a2-b2=(a+b)(a-b)a3-[-3(a2)b+3ab2]=(a-b)(a-b)2+3ab(a-b) =(a-b)(a2-2ab+b2+3ab)=(a-b)(a2+ab+b2)a3+b3=(a+b)(a2-ab+b2)其他平方公式a2+b2=(a+b)2-2ab或=(a-b)2+2ab
定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。  意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。

5,因式分解的概念是什么

因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。 ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。 am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

6,因式分解公式及概念

因式分解公式公式描述:式一为平方差公式,式二为完全平方公式,式三为立方差公式,式四为立方和公式,式五为十字相乘法公式。因式分解的概念:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个最简整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
因式分解指的是把一个多项式分解为几个整式的积的形式. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。 ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。 am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。1.运用公式法  在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:  (1)a2-b2=(a+b)(a-b);  (2)a2±2ab+b2=(a±b)2;  (3)a3+b3=(a+b)(a2-ab+b2);  (4)a3-b3=(a-b)(a2+ab+b2).  下面再补充几个常用的公式:  (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;  (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);  (7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;  (8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;  (9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.  运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:a3+b3+c3-3abc.  本题实际上就是用因式分解的方法证明前面给出的公式(6).  分析 我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3  的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).  这个公式也是一个常用的公式,本题就借助于它来推导.  解 原式=(a+b)3-3ab(a+b)+c3-3abc      =[(a+b)3+c3]-3ab(a+b+c)      =(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)      =(a+b+c)(a2+b2+c2-ab-bc-ca).2.拆项、添项法  因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例2 分解因式:x3-9x+8.  分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.  解法1 将常数项8拆成-1+9.  原式=x3-9x-1+9    =(x3-1)-9x+9    =(x-1)(x2+x+1)-9(x-1)    =(x-1)(x2+x-8).  解法2 将一次项-9x拆成-x-8x.  原式=x3-x-8x+8    =(x3-x)+(-8x+8)    =x(x+1)(x-1)-8(x-1)    =(x-1)(x2+x-8).  解法3 将三次项x3拆成9x3-8x3.  原式=9x3-8x3-9x+8    =(9x3-9x)+(-8x3+8)    =9x(x+1)(x-1)-8(x-1)(x2+x+1)    =(x-1)(x2+x-8).  解法4 添加两项-x2+x2.  原式=x3-9x+8    =x3-x2+x2-9x+8    =x2(x-1)+(x-8)(x-1)    =(x-1)(x2+x-8).  说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.3.换元法  换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.  例3 分解因式:(x2+x+1)(x2+x+2)-12.  分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.  解 设x2+x=y,则  原式=(y+1)(y+2)-12=y2+3y-10    =(y-2)(y+5)=(x2+x-2)(x2+x+5)    =(x-1)(x+2)(x2+x+5).  说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.  4、双十字相乘法  分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.  例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),  可以看作是关于x的二次三项式.  对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为  (x+2y)(2x-11y)=2x2-7xy-22y2;  (x-3)(2x+1)=2x2-5x-3;  (2y-3)(-11y+1)=-22y2+35y-3.  这就是所谓的双十字相乘法.  用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:  (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);  (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例4 分解因式:  x2-3xy-10y2+x+9y-2解: 原式=(x-5y+2)(x+2y-1)
提公因式运用公式十字相乘拆项、添项

文章TAG:因式分解  分解  概念  什么  因式分解的概念  
下一篇