本文目录一览

1,关于幂函数的教案范文

  以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。而今的数学教学要求把学生的生活 经验 带到课堂,要求在简单的知识框架和结构上创造性的使用教材,让课堂变得有血有肉。接下来是我为大家整理的关于幂函数的教案 范文 ,希望大家喜欢!    关于幂函数的教案范文一   教学任务分析:   (1)理解幂函数的概念,会画五种常见幂函数的图像;   (2)结合幂函数的图像,理解幂函数图像的变化情况和性质;   (3)通过观察、 总结 幂函数的性质,培养学生概括抽象和识图能力。   教学重点:   常见幂函数的的概念、图像和性质。   教学难点:   幂函数的单调性及比较两个幂值的大小。   教具准备:   多媒体课件、投影仪、打印好的作业。   教学情景设计   问题   ? 师生活动 设计意图 问题1:如果张红购买了1元/千克的蔬菜x千克,那么她需要付的钱数y(元)和购买的蔬菜量x?(千克)之间有何关系?   问题2:如果正方形的边长为x,那么正方形面积y=?   问题3:如果正方体的棱长为x,那么正方体体积y=   问题4:如果正方形场地的面积为x,那么正方形的边长?y=?   问题5:如果某人x秒内骑车行进1千米,那么他骑车的平均速度y=(千米/秒) 引导学生探索发现:   通过生活实例,引出幂函数的概念,使学生体会到数学在生活中的应用,激发学生的学习兴趣。 你能发现这几个函数解析式有什么共同点吗?   ? 引导学生归纳结论   (1)?指数为常数.   (2)?右边均是以自变量为底的幂的形式; 认识五种常见的幂函数。 给出幂函数的定义:一般地,形如? 的函数称为幂函数,其中x为自变量,α为常数. 例1:在函数 , , , 中,哪几个函数是幂函数? 引导学生依据幂函数定义及特征头判断;   1、 即 (是)   2、 (不是)   3、 (不是)   4、 (是) 正确认识幂函数 请在同一坐标系内画出以上五个幂函数的图像 指导学生画出图像,多媒体呈现图像 训练学生的作图、识图能力。 观察以上图像将你发现的结论填入性质表?   定义域   值域    关于幂函数的教案范文二   教材分析:   幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.?幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数?.组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质.对于幂函数,只需重点掌握?这五个函数的图象和性质.学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析.学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了 方法 上的准备.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.   课时分配 1课时   教学目标   重点:从五个具体的幂函数中认识的概念和性质   难点: 从幂函数的图象中概括其性质,据幂函数的单调性比较两个同指数的指数式的大小   知识点:幂函数的定义、五个幂函数图象特征   能力点:通过具体实例了解幂函数的图象和性质,并能进行简单的应用    教育 点:进一步渗透数形结合与类比的思想方法;体会幂函数的变化规律及蕴含其中的对称性   自主探究点:通过作图归纳总结幂函数的相关性质   考试点:了解幂函数的概念,   结合函数 的图象了解它们的变化情况   易错易混点:学生容易将幂函数和指数函数混淆   拓展点:通过指数函数的图象性质研究幂函数指数的变化   教具准备:多媒体辅助教学   课堂模式:导学案   一、引入新课   (一) 回顾引入   【师生互动】师:数学的内在美常常让我感动,下面我们共同来欣赏运算的完美性,   思考:由8、2、3、 这四个数,运用数学符号可组成哪些等式?   生:探讨,交流   师生共同分析:   【设计意图】(1)给出开放性问题,主要是为了提高学生的想象能力,激发他们学习新内容的兴趣(2)不但培养了学生动手的能力,也营造了师生合作,共同探讨问题的氛围   师:我们知道 对于等式   1 .如果 一定, 随着 的变化而变化,我们建立了指数函数   2 . 如果 一定, 随着 的变化而变化,我们建立了对数函数   设想 :如果 一定, 随着 的变化而变化,是不是也可以确定一个函数呢?   【设计说明】使学生回忆所学两个基本初等函数,为所要学习的幂函数作铺垫   (二) 观察下列对象:   问题(1):如果张红购买了每千克1元的蔬菜 千克,那么她需要付的钱数 = 元,   问题(2):如果正方形的边长为 ,那么正方形的面 是 =   问题3):如果正方体的边长为 ,那么正方体的体积是 =   问题(4):如果正方形场地面积为 ,那么正方形的边长 =   问题(5):如果某人 s内骑车行进了1km,那么他骑车的平均速度 =   【师生互动】师:(1)它们的对应法则分别是什么?   (2)以上问题中的函数有什么共同特征?   让学生独立思考后交流,引导学生概括出结论   生:(1)乘以1 (2)求平方 (3)求立方   (4)求算术平方根 (5)求-1次方   师: 上述的问题涉及到的函数,都是形如: ,其中 是自变量, 是常数.   师生:共同辨析这种新函数与指数函数的异同.   【设计意图】(1)引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现是 是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣(2)通过具体实例让学生了解对数函数模型的实际背景,以表明对数函数来源于实践并且服务于实践;同时也充分体现了数学的应用价值;   二、探究新知   组织探究   1.幂函数的定义   一般地,形如 ( R)的函数称为幂函数,其中 是自变量, 是常数.   如 等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.   【师生互动】师:1.幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析.   2.研究函数的图像   (1) (2) (3)   (4) (5)   生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所作图象,体会幂函数的变化规律.   师:引导学生应用函数的性质画图象,如:定义域、奇偶性.   师生共同分析:强调画图象易犯的错误.   【设计意图】(1)通过具体作图,可使学生加深对图象的直观印象,记忆比较牢固;同时也提高了学生数形结合的思维能力;(2)符合学生的认知规律,由特殊到一般,从具体到抽象;(3)充分发挥学生学习的能动性,以学生为主体,展开课堂教学.   【师生互动】师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律.   生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表.   定义域 值域 奇偶性 单调性 定点   师生共同分析幂函数性质:   (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);    关于幂函数的教案范文三   教学目标:   一知识目标   1. 熟悉幂函数的概念,判别幂函数;   2.根据具体的幂函数图象,描述其定义域。   二能力目标   培养学生数形结合能力,合作交流能力,以及应用数学的能力。   三情感目标   让学生感受到数学来源于生活,应用于生活,并认识到现代信息技术在人们认识世界过程中的作用,激发学生的学习动力。   教学重点:幂函数的概念辨析。   教学用具:多媒体。   教学过程:   教学环节 教学任务 教学步骤 问题设计 师生活动 创设情景导入新课   任务一:认识幂函数   一般地,形如 (α∈R,α≠0)的函数叫做幂函数,其中x为自变量,α为常数。   1.问题引入 问题1:你能列出下列应用问题的函数解析式吗?   ①每只铅笔的价格为1元,购买铅笔的金额 与铅笔的支数 之间的解析式;   ②正方形面积y与边长x之间的解析式;   ③正方形场地的边长y与面积x之间的解析式;   ④如果某人x秒内骑车行进1千米,那么他骑车的平均速度y与时间x之间解析式。 幻灯片演示问题。学生口答,教师板书答案。 教学环节 教学任务 教学步骤 问题设计 师生活动 合作交流探究新知 任务一:认识幂函数   一般地,形如 (α∈R,α≠0)的函数叫做幂函数,其中x为自变量,α为常数。   2.探究特征 上述函数解析式的结构形式有什么共同特征?(右边指数式,且底数都是变量)   给出幂函数的定义。 学生相互讨论,教师引导学生观察。 3.辨析函数 例1:判断下列函数是否是幂函数: 关于幂函数的教案范文相关 文章 : 1. 高一数学必修1《幂函数教案》教案

关于幂函数的教案范文

2,高中数学教案教学设计

  人生要敢于理解挑战,经受得起挑战的人才能够领悟人生非凡的真谛,才能够实现自我无限的超越,才能够创造魅力永恒的价值。接下来是我为大家整理的高中数学教案教学设计,希望大家喜欢!    高中数学教案教学设计一   函数单调性与奇偶性   教学目标   1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本 方法 .   (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.   (2)能从数和形两个角度认识单调性和奇偶性.   (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.   2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.   3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.   教学建议   一、知识结构   (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.   (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.   二、重点难点分析   (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.   (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.   三、教法建议   (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.   (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生 总结 规律.   函数的奇偶性概念引入时,可设计一个课件,以   \   的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值   \   开始,逐渐让   \   在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式   \   时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如   \   )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.    高中数学教案教学设计二   高中数学第一册(上)1.1集合(一)教学案例教学目标:1、理解集合、集合的元素的概念;2、了解集合的元素的三个特性;3、记忆常用数集的表示;4、会判断元素与集合的关系,   集合(一)教学案例   。教学重点:1、集合的概念;2、集合的元素的三个特征性质教学难点:1、集合的元素的三个特性;2、数集与数集的关系课前准备:1、教具准备:多媒体制作数学家康托介绍,包括头像、生平、对数学发展所作的贡献;本节课所需的例题、图形等。2、布置学生预习1.1集合.教学设计:一、[创设情境]多媒体展示激发兴趣:为科学而疯的人——康托托康(Contor,Georg)(1845-1918),俄罗斯—德国数学家、19世纪数学伟大成就之一—集合论的创立人。康托生於俄国圣彼得堡,父母亲是丹_,父亲出生於丹_都哥本哈根,是一个富裕的商人,他的母亲玛丽具有艺术家血统,他父母亲年轻时移居到俄国圣彼得堡,康托就出生在那里,康托是家中长子,并於1856年全家移居到德国法兰克福,也因为康托多次改变国籍,许多国家都认为康托的成就都是它们培养出来的。康托自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。1874年康托的有关无穷的概念,震撼了知识界。康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质新的思想模式,建立了处理数学中的无限的基本技巧,从而极大地推动了分析与逻辑的发展。他研究数论和用三角函数地表示函数等问题,发现了惊人的结果:证明有理数是可列的,而全体实数是不可列的。由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托对这类“无穷集合”问题发表了一系列 文章 ,通过严格证明得出了许多惊人的结论。康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学_的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神_,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个代所能夸耀的最巨大的工作。”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托在一家精神病院去世。今天,我们将学习高中数学第一章集合与简易逻辑的1.1集合(一),让我们回顾一下初中涉及到集合的有关知识。二、[复习旧知识]复习提问:1.在初中,我们学过哪些集合?实数集、二元一次方程的解集、不等式(组)的解集、点的集合等。2.在初中,我们用集合描述过什么?角平分线、线段的垂直平分线、圆、圆的内部、圆的外部等。   实数有理数无理数整数分数正无理数负无理数正分数负分数负整数自然数正整数零3.实数的分类3、实数的分类:   实数正实数负实数零   4、以下由学生完成:(1)、把下列各数填入相应的圈内   0、、2.5、、、-6、、8%、19   整数集合分数集合无理数集合   (2).把下列各数填入相应的大括号内1、-10、、、-2、3.6、、—0.1、8、负有理数集合:   整数集合:   正实数集:   无理数集:   3.解不等式组(1)2x-3〈5   4.绝对值小于3的整数是—————————————————三、[学习互动]1、观察下列对象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)与一个角的两边距离相等的点;(4)满足x-3>2的全体实数;(5)本班全体男生;(6)我国古代四大发明;(7)2007年本省高考考试科目;(8)2008年奥运会的球类项目,   《集合(一)教学案例》通过学生观察以上对象后,教师提问:[集合的概念](1)集合是什么?某些指定的对象集在一起就成为一个集合,简称集。(2)什么是集合的元素?集合中的每个对象叫做这个集合的元素。(3)集合、集合的元素怎样表示?一般用大括号表示集合且常用大写字母表示;集合中的元素用小写字母表示。(4)集合中的元素与集合的关系a是集合A的元素,称a属于A,记作a∈A;a不是集合A的元素,称a不属于A,记作aA。2、探讨下列问题(1)   32(5)(-2)0N_6)Q   3232(7)Z(8)—R   五、[分层议练]1、选择题(1)下列不能形成集合的是()A、所有三角形B、《 高一数学 》中的所有难题C、大于π的整数D、所以的无理数2、判断正误(1)   常用数集属于a∈AN、N_或N+)、Z、Q、R。集合集合的概念元素与集合的关系集合中元素的性质确定性互异性无序性不属于aA   本节课设计的目的:通过创设情境激发学生的学习兴趣, 课前预习 培养学生的自学能力;多媒体辅助教学提高课堂效益,使教学呈现方式多样化;探索现代教学手段与高中数学教学的整合。    高中数学教案教学设计三   集合的概念   教学目的:   (1)使学生初步理解集合的概念,知道常用数集的概念及记法   (2)使学生初步了解“属于”关系的意义   (3)使学生初步了解有限集、无限集、空集的意义   教学重点:集合的基本概念及表示方法   教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示   一些简单的集合   授课类型:新授课   课时安排:1课时   教具:多媒体、实物投影仪   内容分析:   1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础   把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑   本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子   这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念   集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明   教学过程:   一、复习引入:   1.简介数集的发展,复习公约数和最小公倍数,质数与和数;   2.教材中的章头引言;   3.集合论的创始人——康托尔(德国数学家)(见附录);   4.“物以类聚”,“人以群分”;   5.教材中例子(P4)   二、讲解新课:   阅读教材第一部分,问题如下:   (1)有那些概念?是如何定义的?   (2)有那些符号?是如何表示的?   (3)集合中元素的特性是什么?   (一)集合的有关概念:   由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.   定义:一般地,某些指定的对象集在一起就成为一个集合.   1、集合的概念   (1)集合:某些指定的对象集在一起就形成一个集合(简称集)   (2)元素:集合中每个对象叫做这个集合的元素   2、常用数集及记法   (1)非负整数集(自然数集):全体非负整数的集合记作N,   (2)正整数集:非负整数集内排除0的集记作N_N+   (3)整数集:全体整数的集合记作Z,   (4)有理数集:全体有理数的集合记作Q,   (5)实数集:全体实数的集合记作R   注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括   数0   (2)非负整数集内排除0的集记作N_N+Q、Z、R等 其它   数集内排除0的集,也是这样表示,例如,整数集内排除0   的集,表示成Z _  3、元素对于集合的隶属关系   (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A   (2)不属于:如果a不是集合A的元素,就说a不属于A,记作   4、集合中元素的特性   (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,   或者不在,不能模棱两可   (2)互异性:集合中的元素没有重复   (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)   5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……   元素通常用小写的拉丁字母表示,如a、b、c、p、q……   ⑵“∈”的开口方向,不能把a∈A颠倒过来写   三、练习题:   1、教材P5练习1、2   2、下列各组对象能确定一个集合吗?   (1)所有很大的实数(不确定)   (2)好心的人(不确定)   (3)1,2,2,3,4,5.(有重复)   3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__   4、由实数x,-x,|x|,所组成的集合,最多含(A)   (A)2个元素(B)3个元素(C)4个元素(D)5个元素   5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:   (1)当x∈N时,x∈G;   (2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G   证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,   则x=x+0_a+b∈G,即x∈G   证明(2):∵x∈G,y∈G,   ∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)   ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)   ∵a∈Z,b∈Z,c∈Z,d∈Z   ∴(a+c)∈Z,(b+d)∈Z   ∴x+y=(a+c)+(b+d)∈G,   又∵=   且不一定都是整数,   ∴=不一定属于集合G   四、小结:本节课学习了以下内容:   1.集合的有关概念:(集合、元素、属于、不属于)   2.集合元素的性质:确定性,互异性,无序性   3.常用数集的定义及记法   五、课后作业:   六、板书设计(略)   七、课后记:

高中数学教案教学设计

3,高中数学优秀教案设计

教案是老师进行教学的重要道具,对教学有重要的作用,可以帮助老师更好地把控教学节奏。有了教案,老师可以更好地进行教学,提高自身的教学水平,更好地实现教学目标。优秀的教案设计对老师的帮助是非常大的,这里给大家分享一些优秀的教案设计,供大家参考。 高中数学圆锥曲线教案 范文 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般 方法 。 3.借助多媒体辅助教学,激发学习数学的兴趣. 五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出—— 例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。 (A)椭圆 (B)双曲线 (C)线段 (D)不存在 (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。 (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线 【设计意图】 定义是揭示概念的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。 为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。 【学情预设】 估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2 5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5 入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。 在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。 (二)理解定义、解决问题 例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。 (2)在(1)的条件下,给定点P(-2,2), 求|PA| 【设计意图】 运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。 【学情预设】 根据以往的 经验 ,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。 (三)自主探究、深化认识 如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会—— 练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。 引申:若将点A移到圆C外,点M的轨迹会是什么? 【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话, 可借助“多媒体课件”,引导学生对自己的结论进行验证。 【知识链接】 (一)圆锥曲线的定义 1. 圆锥曲线的第一定义 2. 圆锥曲线的统一定义 (二)圆锥曲线定义的应用举例 x2y2 1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P169 到右准线的距离。 |PF1||PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO| 取值范围。 3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。 x2y2 4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求259 |MA|+|MF|的最小值。 x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当9272 1|AM||MF|最小时,求M点的坐标。 2 x2 (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。 8 x2y2 5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最259 小值与最大值。 七、教学 反思 1.本课将借助于“www.liuxue86.com”,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。 2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。 总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质 教育 ,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。 高中数学《等比数列》优秀教案 教学目标 1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。 (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念; (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项; (3)通过通项公式认识等比数列的性质,能解决某些实际问题。 2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。 3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。 教材分析 (1)知识结构 等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用. (2)重点、难点分析 教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用. ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点. ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点. ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点. 教学建议 (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用. (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义. (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解. (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象. (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现. (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 教学设计示例 课题:等比数列的概念 教学目标 1.通过教学使学生理解等比数列的概念,推导并掌握通项公式. 2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力. 3.培养学生勤于思考,实事求是的精神,及严谨的科学态度. 教学重点,难点 重点、难点是等比数列的定义的归纳及通项公式的推导. 教学用具 投影仪,多媒体软件,电脑. 教学方法 讨论、谈话法. 教学过程 一、提出问题 给出以下几组数列,将它们分类,说出分类标准.(幻灯片) ①-2,1,4,7,10,13,16,19,… ②8,16,32,64,128,256,… ③1,1,1,1,1,1,1,… ④243,81,27,9,3,1,,,… ⑤31,29,27,25,23,21,19,… ⑥1,-1,1,-1,1,-1,1,-1,… ⑦1,-10,100,-1000,10000,-100000,… ⑧0,0,0,0,0,0,0,… 由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列). 二、讲解新课 请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步) 等比数列(板书) 1.等比数列的定义(板书) 根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语. 请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识: 2.对定义的认识(板书) (1)等比数列的首项不为0; (2)等比数列的每一项都不为0,即 问题:一个数列各项均不为0是这个数列为等比数列的什么条件? (3)公比不为0. 用数学式子表示等比数列的定义. 是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列?为什么不能? 式子给出了数列第项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式. 3.等比数列的通项公式(板书) 问题:用和表示第项 ①不完全归纳法 ②叠乘法 ,…,,这个式子相乘得,所以 (板书)(1)等比数列的通项公式 得出通项公式后,让学生思考如何认识通项公式. (板书)(2)对公式的认识 由学生来说,最后归结: ①函数观点; ②方程思想(因在等差数列中已有认识,此处再复习巩固而已). 这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练) 如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题。 三、小结 1.本节课研究了等比数列的概念,得到了通项公式; 2.注意在研究内容与方法上要与等差数列相类比; 3.用方程的思想认识通项公式,并加以应用。 探究活动 将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0.01毫米。 参考答案: 30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是 粒,用计算器算一下吧(对数算也行)。 高中数学数列教案设计 一、教材分析 (一)地位与作用 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 (二)学情分析 (1)学生已熟练掌握_________________。 (2)学生的知识经验较为丰富,具备了教强的 抽象思维 能力和演绎推理能力。 (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。 (4) 学生层次参次不齐,个体差异比较明显。 二、目标分析 新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标: (一)教学目标 (1)知识与技能 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。 (2)过程与方法 引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。 (3)情感态度与价值观 在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 (二)重点难点 本节课的教学重点是________________________,教学难点是_____________________。 三、教法、学法分析 (一)教法 基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性. 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念. 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达. (二)学法 在学法上我重视了: 1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到 理性思维 的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、 总结 、运用,培养学生发现问题、研究问题和分析解决问题的能力。 四、教学过程分析 (一)教学过程设计 教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。 (1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。 (2)引导探究,建构概念。 数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程. (3)自我尝试,初步应用。 有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究. (4)当堂训练,巩固深化。 通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。 (5)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能? (二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成. 高中数学优秀教案设计相关 文章 : 1. 高中数学集合教案设计 2. 高中数学教案怎么写 3. 高中数学如何教学设计 4. 高考数学集合教案大全 5. 高中数学三年如何教学设计 6. 2020高中数学等比数列教案设计大全 7. 高中语文《数学与文化》教案设计 8. 高中数学随机抽样教案设计 9. 高中数学幂函数教案设计 10. 高中数学等差数列教案大全

高中数学优秀教案设计


文章TAG:函数的单调性教案函数  单调  单调性  
下一篇