本文目录一览

1,数据分析师具体是什么岗位

国内的企业数据分析岗位其实不成体系的,还有各种叫法,数据分析员,分析师,架构师,科学家等等,

数据分析师具体是什么岗位

2,请问有哪位大神知道中国移动的数据分析岗位是做什么的啊最近校

一般是负责两级运营的数据统计规划和报表设计; 以及负责移动商城日常运营情况监控; 包括撰写常态化运营报告、综合性工作计划、总结、报告、调查报告; 还负责合作方日常运营、考核及结算管理。你是硕士学位很有潜力,凭你的智慧你是可行的

请问有哪位大神知道中国移动的数据分析岗位是做什么的啊最近校

3,感觉好多机构都有什么数据分析师证书之类到底哪些证书是比较靠

证书对您的帮助一方面是为自己镀金证明具备的技能实力,另一方面为企业提供一个很有力的参考标准,比如很多企业面试中有笔试的环节,如果有获得CDA证书,很可能会跳过笔试部分,增加了竞争优势。目前很多企业已经把CDA持证人优先例入到JD中,高等级证书也是你在职业发展中也是跳槽、升职加薪的有力证明。
国内比较认可这个证书,工信部和数据分析协会颁发的双证书。有从业资格。
据我了解,在国际上,认证分析专家(Certified Analytics Professional)、数据科学专业成就认证(Certification of Professional Achievement in Data Sciences)、卓越大数据分析与优化工程认证(Certificate in Engineering Excellence Big Data Analytics and Optimization,简称CPEE)、大规模数据集挖掘认证(Mining Massive Data Sets Graduate Certificate)这些都是非常有含量的证书。在国内的情况我就不是很了解了,不过有听说CDA数据分析师这个证书还不错,但具体情况还是得你自己去了解。

感觉好多机构都有什么数据分析师证书之类到底哪些证书是比较靠

4,数据分析师怎么入门

1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
数据分析师证书考试由工业和信息化部教育与考试中心和中国商业联合会数据分析专业委员会统一安排考核,每年有4次考试。大致在每年的3月、6月、9月、12月中旬,具体时间请关注cpda项目数据分析师官网考试通知。考试内容为《数据分析基础》《量化经营》和《量化投资》三门,每门100分,60分及格制。  考核合格后,就可获得由工业和信息化部教育与考试中心颁发的《项目数据分析师职业技术证书》和中国商业联合会数据分析专业委员会颁发的《项目数据分析师证书》。
非数学专业需要基础的数理统计等知识,整个数据分析行业目前就是这样的:1、你可以成为一个统计专员,这在大部分电商店铺都是这种意义2、你可以成为一个分析专员,这在一些定型的公司有职位,但对能力要求仅限那个职位3、你可以成为一个分析师,前提是你有基础且有求知的渴望,然后可以联系下面这个人。(截止日期9月1日前)新浪微博 @数据分析先生PS.数据分析不是关于复杂函数和软件的,而是知识的重构和非结构化问题的解决。
总体来说,先学基础,再学理论,最后是工具1、学习数据分析基础知识,包括概率论、数理统计2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识。3、学习数据分析工具,如sas、spss,甚至excel也可以(数据分析模块的功能很强大)切记,第一步是必不可少的,是数据分析的基础。4、目前还没有什么专业的认证。不过可以考试统计类的资格认证,有利于找工作。

5,数据分析师是从事哪些数据工作的

数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。作用越来越多的政府机关、企事业单位将选择拥有数据分析师资质的专业人士为他们的项目做出科学、合理的分析、以便正确决策;越来越多的风险投资机构把数据分析师所出具的数据分析报告作为其判断项目是否可行及是否值得投资的重要依据;越来越多的高等院校和教育机构把数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把数据分析师培训内容作为其职业生涯发展中必备的知识体系。2工作职责互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。3要求技能要求1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。[1]其他要求良好的沟通交流能力,文字语言表达能力,较好的逻辑分析能力;具有独立的产品策划开发能力,项目管理,商务沟通能力;强烈责任心,开放的性格,良好的沟通能力; 擅于协作,具备良好的团队合作精神;能够在压力下开展工作;善于学习。4考试等级当前我国数据分析师由中国商业联合会数据分析专业委员会以及工信部教育考试中心共同考核认证,通过培训考核,工信部教育考试中心颁发《项目数据分析师职业技术证书》,数据分析行业协会颁发《项目数据分析师证书》,此证书是申请成立项目数据分析事务所的必备条件之一。5培养国内正式的数据分析行业的认证只有数据分析师认证,由国家工业与信息化部中国电子商务协会在全国开展推广,截至2010年中国数据分析业已拥有数据分析专业人才超过万人,每年以数以千计的速度增长。[2]对于人才的培养,国家工业与信息化部中国电子商务协会设立全国数据分析师考核鉴定中心在全国各省、直辖市发展授权管理培训中心,开展培训、继续教育工作。
1、聚类分析(cluster analysis)聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。2、因子分析(factor analysis)因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。3、相关分析(correlation analysis)相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以x和y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则x与y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。4、对应分析(correspondence analysis)对应分析(correspondence analysis)也称关联分析、r-q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。5、回归分析研究一个随机变量y对另一个(x)或一组(x1,x2,…,xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。6、方差分析(anova/analysis of variance)又称“变异数分析”或“f检验”,是r.a.fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。这个 还需要具体问题具体分析

文章TAG:中国数据分析师中国  中国数据  数据  
下一篇