1,什么是三角函数

在数学中,三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。 三角函数在数学中属于初等函数里的超越函数的一类函数。它们本质上是任意角的集合与一个比值的集合的变量之间的映射。由于三角函数具有周期性,所以并不具有单射函数意义上的反函数。三角函数在复数中有重要的应用,在物理学中也是常用的工具。

什么是三角函数

2,三角函数是什么

三角函数是数学中常见的一类关于角度的函数.也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义.三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具.在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值.常见的三角函数包括正弦函数(SinX)、余弦函数(Cosx)和正切函数(tanx).在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数.不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式.三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途.另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数.常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等
三角函数(trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

三角函数是什么

3,三角函数是什么意思

是以实数为自变量的函数,角终边上的一点(x,y)和这点到原点的距离r,三个量两两做比,六个比值分别叫正弦、余弦。。。。。。。。。。
三角函数的定义是什么
三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。定义  它有六种基本函数(初等基本表示):三角函数数值表:  (斜边为r,对边为y,邻边为x。)  在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有  正弦函数sinθ=y/r正弦(sin):角α的对边比上斜边  余弦函数cosθ=x/r余弦(cos):角α的邻边比上斜边  正切函数tanθ=y/x正切(tan):角α的对边比上邻边  余切函数cotθ=x/y余切(cot):角α的邻边比上对边  正割函数secθ=r/x正割(sec):角α的斜边比上邻边  余割函数cscθ=r/y余割(csc):角α的斜边比上对边  以及两个不常用,已趋于被淘汰的函数:  正矢函数versinθ=1-cosθ  余矢函数coversθ=1-sinθ
三角函数(trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

三角函数是什么意思

4,什么是三角函数

在数学中,三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。三角函数在数学中属于初等函数里的超越函数的一类函数。它们本质上是任意角的集合与一个比值的集合的变量之间的映射。由于三角函数具有周期性,所以并不具有单射函数(亦称为单调函数)意义上的反函数。三角函数在复数中有重要的应用,在物理学中也是常用的工具。三角函数一般用于计算三角形(通常为直角三角形)中未知长度的边和未知的角度,在导航系统,工程学以及物理学方面都有广泛的用途。 其在基本物理中的一个常见用途是将矢量转换到笛卡尔坐标系中。现代比较常用的三角函数有6个,其中Sin和Cos还常用于模拟周期函数现象,比如说声波和光波,谐振子的位置和速度,光照强度和白昼长度,过去一年中的平均气温变化等等。呵呵,其实是wiki上的东东,wiki是个好东东哦!
数形结合的产物是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 http://baike.baidu.com/view/91555.html?wtp=tt

5,三角函数是什么

sin cos tan cot
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。 ----a variable so related to another that for each value assumed by one there is a value determined for the other. 自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。 ----a rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set. 因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一一值与其相对应. 函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。 函数的概念对于数学和数量学的每一个分支来说都是最基础的。 ~‖函数的定义: 设x和y是两个变量,d是实数集的某个子集,若对于d中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x). 数集d称为函数的定义域,由函数对应法则或实际问题的要求来确定。相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。 functions 数学中的一种对应关系,是从非空集合a到实数集b的对应。简单地说,甲随着乙变,甲就是乙的函数 。精确地说,设x是一个非空集合,y是非空数集 ,f是个对应法则 , 若对x中的每个x,按对应法则f,使y中存在唯一的一个元素y与之对应 , 就称对应法则f是x上的一个函数,记作y=f(x),称x为函数f(x)的定义域,集合{y|y=f(x),x∈r}为其值域(值域是y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。 若先定义映射的概念,可以简单定义函数为:定义在非空数集之间的映射称为函数。 一般地,在一个变化过程中并且对于x的每一个确定的值,y都有唯一的值与其对应,y是x的函数。如果当x=a时y=b,那么b叫做当自变量。 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用,三角函数也是常用的工具、余弦、正切、余切、正割,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解。在物理学中三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数、余割。由于三角函数的周期性,将其定义扩展到复数系。它包含六种基本函数:正弦

6,什么是三角函数

一?三角函数的起源三角学的概念起源甚早,在古文献「莱因德纸草书」出土后证据显示古埃及人己有实用三角学的粗略概念,来保持金字塔每边都有相同的斜度,只是当时并没有使用余切这个名词而已。至西元前150年至100年间,希腊人热衷天文学,开始研究三角学,于是三角学渐渐有了雏形。后来印度人吸收了希腊人在三角学方面的知识,再加以改进,也把它当成研究天文学的利器。长久以来,三角学就这样依附着天文学发展,直到十三世纪,才自天文学中脱离成一门独立的学问。十六世纪的欧洲,由于航海、历法计算的需要,更增加三角学的重要性。如今它不但应用于天文、地理,举凡航海、航空、建筑、工程、体育等…的一门基础学问,甚至在我们日常生活中,也成为不可欠缺的知识。二?角希腊数学家欧几里得在所着「几何原本」这一书中说明一个平面角,就是平面上两条相交但不重叠的直线,彼此间倾斜度。实际上角的概念,一方面代表两条相交直线分割的性质,另一方面也代表其分割程度,即角的度量衡。三?角的度量与换算1.制 我们都知道圆规绕一圈为360度,但是好奇而且追根就底的人就会有疑问,为什么会将圆分割为360等分。从数学史的角度,也许给一些答案,古代巴比伦人计数的单位为60进位,而且在60倍数中最接近一年的天数为360。可能符合上述的解答,即使在日常生活以10进位的时代,时钟的刻度还保持60进位,规定1小时为60分钟,1分钟为60秒。2.弪度制(弧度) 在上一节,我们找圆分割为360等分,每一等分记为1度,1圈总计为。数学上还有一种常用的度量单位,称为弧度。在圆周上,截取与半径等长之弧,则此弧所对的圆心角称为一弧度(或称为一弪),以弧度为单位,通常省略不写,如:2弧度简记为2(图1)又因为单位圆的周长为,所以=,由此可得1弪度,且(弧度),这里有一个有趣的结果,经掌上型计算器可得知,这与的差距不到十万分之一。所以当弪度x为很小时,换句话说计算sinx可用x来估计,这可能是弪度被多人接受的原因之一且在微积分上有重要的应用。
在数学中,三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。三角函数在数学中属于初等函数里的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。由于三角函数表现出周期性,所以它并不具有单射函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
三角函数是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan或者tg)。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。

7,什么是三角函数

三角函数共有六个: 正弦 Sin 余弦 Cos 正切 Tan 余切 Cot 正割 Sec 余割 Csc 定义是,在平面直角坐标系中一个单位圆,某一条半径与x轴正轴的夹角,与其xy坐标构成的一个三角形.三角函数就是研究各个边与角的关系. 这是数学的基础知识,非常重要.一定要学好.
三角函数 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 它有六种基本函数: 函数名 正弦 余弦 正切 余切 正割 余割 符号 sin cos tan cot sec csc 正弦函数 sin(A)=a/h 余弦函数 cos(A)=b/h 正切函数 tan(A)=a/b 余切函数 cot(A)=b/a 正割函数 sec (A) =h/b 余割函数 csc (A) =h/a 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·商的关系: tanα=sinα/cosα cotα=cosα/sinα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 基本初等内容 它有六种基本函数(初等基本表示): 函数名 正弦 余弦 正切 余切 正割 余割 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 以及两个不常用,已趋于被淘汰的函数: 正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形abc中, 角a的正弦值就等于角a的对边比斜边, 余弦等于角a的邻边比斜边 正切等于对边比邻边,

文章TAG:什么是三角函数什么  三角  三角函数  
下一篇