1,量子计算机的原理

量子计算机(quantum computer)是一种使用量子逻辑进行通用计算的装置。不同於电子计算机,量子计算用来存储资料的对象是量子位元,它使用量子演算法来进行资料操作。

量子计算机的原理

2,量子计算机的工作原理

普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。但量子计算机要远远更为强大。它们可以在量子比特(qubit)上运算,可以计算0和1之间的数值。假想一个放置在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。常识告诉我们:原子的旋转可能向上也可能向下,但不可能同时都进行。但在量子的奇异世界中,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。在量子的奇妙世界中,每一种物体都被使用所有不可思议状态的总和来描述。 想象一串原子排列在一个磁场中,以相同的方式旋转。如果一束激光照射在这串原子上方,激光束会跃下这组原子,迅速翻转一些原子的旋转轴。通过测量进入的和离开的激光束的差异,我们已经完成了一次复杂的量子“计算”,涉及了许多自旋的快速移动。 从数学抽象上看,量子计算机执行以集合为基本运算单元的计算,普通计算机执行以元素为基本运算单元的计算(如果集合中只有一个元素,量子计算与经典计算没有区别)。 以函数y=f(x),x∈A为例。量子计算的输入参数是定义域A,一步到位得到输出值域B,即B=f(A);经典计算的输入参数是x,得到输出值y,要多次计算才能得到值域B,即y=f(x),x∈A,y∈B。 量子计算机有一个待解决的问题,即输出值域B只能随机取出一个有效值y。虽然通过将不希望的输出导向空集的方法,已使输出集B中的元素远少于输入集A中的元素,但当需要取出全部有效值时仍需要多次计算。

量子计算机的工作原理

3,量子计算机的概念和工作原理是什么

量子计算机技术涉及利用量子粒子作为一个替代位今天的电脑。 该理论的量子计算机始于20年前与保罗贝尼奥夫,物理学家在阿贡国家实验室,谁使用的概念图灵机作为一种模式的量子计算机。 一个图灵机组成的一盘磁带无限期长度可分为大小均匀广场。 装置能阅读的空白和符号,在磁带是用来指示一台机器,使某一特定程序可以完成。 基本理论量子计算机 量子计算机利用量子粒子的“磁带”的图灵实验。 由于存在一个符号或一个空白的图灵机的磁带,象征二进制数字,所以可以状况的量子粒子被用来举行这些价值观。 使用多量子粒子也意味着,量子计算机将大大快于图灵机,因为它可以执行数计算同时进行。 此外,与今天的电脑使用的基本位其中只有两个国家( 1或0 ) ,量子计算机存储信息的量子位能容纳两个以上的价值。 这种能力的量子位存在于两个以上国家意味着量子计算机有能力的表演超过了100万计算同时在同一时间和潜力,有很多更快和功能更强大很多比今天的超级计算机。 量子计算机还可以利用另外一个重要特点量子粒子被称为纠缠。 财产的纠缠可以转让,并确定价值或自旋的量子粒子通过引入外部力量。 发展量子计算机 虽然量子粒子可用于制造计算机,量子计算机仍然远远没有成为现实,大部分的研究是理论。 迄今为止,科学家一直无法操纵超过7量子位在解决数学公式。 有这方面的事态发展,然而,最引人注目的有: 试验于2000年8月的研究人员在IBM 阿尔马登研究中心能够使细胞核的五个氟原子相互作用的量子位利用磁共振成像和无线电频率脉冲。 这个实验证明是成功的解决了复杂的数学问题,以便找到所谓(确定时期的一个函数)的一个步骤。 今天的计算机能够解决同样的问题只有通过反复循环。 同一年试验,洛斯阿拉莫斯国家实验室 研究人员已经能够建立一个7量子位量子计算机,采用核磁共振影响粒子在原子核中的分子跨巴豆流体(液体由四个碳原子和6个氢原子) 。 核磁共振用线的粒子虽然应用电磁脉冲模仿位信息编码过程的数字化电脑。

量子计算机的概念和工作原理是什么

4,量子计算机基本原理是什么又长什么样

这东西现在还是傻大黑粗的原始形态,你估计也不想看见。现在比最早的计算机艾尼亚克快10-100倍,根本没法用。艾尼亚克是个三十吨的大家伙。它的原理倒是比较简单,就是用光子代替了电子传输信息,用电子只有两种状态,高电平代表1,低电平代表0.用光子就好很多了,一个光子可以传递几个甚至几十个状态。计算速度就从2^n变成了10^n或者100^n,同样的传输单位传达的信息和计算的信息增大多少应该很明显吧。这种计算机的原理和算法已经研究很多年了,都是虚拟研究,现在才有了象点样的实物,应该会发展很快的。
20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。 迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。研究量子计算机的目的不是要用它来取代现有的计算机。量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。量子计算机的作用远不止是解决一些经典计算机无法解决的问题。摘自《科技日报

文章TAG:量子计算  量子计算机  计算  计算机  量子计算机原理  
下一篇