本文目录一览

1,数学数学高中数学高考题

c等于9.

数学数学高中数学高考题

2,2021年高考数学试卷有几套2021年高考数学考点题型全归纳

2021年高考数学考试已经结束,“2021年高考数学试卷有几套呢、2021年高考数学难不难”成为了众多高中学子关注的问题,那么以下老师将为大家一一解答。 一、2021年高考数学试卷有几套 2021年教育部考试中心命制了全国甲、乙卷的文、理科数学试卷,新高考Ⅰ卷、Ⅱ卷的数学试卷(不分文理),共6套数学试卷。天津、北京、上海、浙江采用的是自主命题试卷,因此2021年高考数学试卷总的来说一共有10套。 二、2021年高考数学考点题型全归纳 根据中国教育报发布的2021年高考数学试题评析得知: 2021年高考数学试题运用我国社会主义建设和科技发展的重大成就作为试题情境,深入挖掘我国社会经济建设和科技发展等方面的学科素材,引导学生关注我国社会现实与经济、科技进步与发展,增强民族自豪感与自信心,增强国家认同,增强理想信念与爱国情怀。 2021年高考数学考点题型全归纳如下: 1、新高考Ⅱ卷第4题以我国航天事业的重要成果北斗三号全球卫星导航系统为试题情境设计 立体几何问题 ,考查考生的空间想象能力和阅读理解、数学建模的素养。 2、乙卷理科第6题以北京冬奥会志愿者的培训为试题背景,考查 逻辑推理能力和运算求解 能力。 3、新高考Ⅰ卷第18题以“一带一路”知识竞赛为背景,考查了考生对 概率统计基本知识的理解与应用 。 4、甲卷文、理科第2题以我国在脱贫攻坚工作取得全面胜利和农村振兴为背景,通过图表给出了某地农户家庭收入情况的抽样调查结果,以此设计问题,考查考生 分析问题和数据处理的能力 。 5、乙卷理科第9题以魏晋时期我国数学家刘徽的著作《海岛算经》中的测量方法为背景,考查考生 综合运用知识解决问题的能力 ,让考生充分感悟到我国古代数学家的聪明才智。 6、新高考Ⅰ卷第16题以我国传统文化剪纸艺术为背景,让考生体验从特殊到一般的探索数学问题的过程,重点考查考生 灵活运用数学知识分析问题 的能力。

2021年高考数学试卷有几套2021年高考数学考点题型全归纳

3,高考数学题

给你口味题∑1/n^3(k=1到n)

高考数学题

4,2019年四川高考数学试卷答案点评和难度解析

四川高考数学试卷答案点评和难度解析 高考四川卷数学学科的命题,遵循《考试大纲》及《考试说明(四川卷)》要求,继承近年来形成的命题传统,结合全省实施中学数学教学实际,体现课程改革理念,坚持平稳推进、适度创新,在充分考查基础知识、基本方法的同时,深化能力立意,注重考查考生的运算求解、推理论证等数学能力及应用意识和创新意识,突出对数学思维、数学方法和数学素养的考查。试题命制立足于学科核心和主干,重点考查支撑数学学科体系的内容,将知识、能力和素质的考查融为一体,通过适度联系与综合等方式,在知识交汇处考查学生的数学视野、探究意识和学习潜能,充分体现数学的科学价值和人文价值。试题难度设置符合高中学生数学学习现状与高考性质,试卷布局合理、问题设计科学、试题表述规范,有利于准确测试不同层次考生的学习水平。 强化主干内容,重视教材价值 全卷重视基础知识的全面考查,所涉及的知识点覆盖了整个高中数学的所有知识板块;试题突出主干知识的重点考查,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科3,9,12,15,16,19,21,文科3,13,15,17,19,21等题,全面考查函数概念、性质等基础知识,考查考生掌握函数这一核心内容相关方法及思维水平的现状;理科10,14,20,文科9,10,11,20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科8,文理科18等题,考查基本的线面关系(理科包括面面夹角的计算);理科17,文科16等题,考查了概率统计的相关知识。这样的内容设计,对高中毕业生的数学基础和素养进行了重点测试,重视对基础知识和通性通法的考查,保证了试卷的内容效度,有利于引导高中数学教学在注重基础知识的同时突出核心和主干、回归数学本质。 试题与教材联系紧密,不少题目都有教材背景,有的则直接由教材的例题或习题改编。理科1-6,8,9,11-13,16,18,21,文科1-3,5-8,11-13,16-18,20,21等题源于教材、高于教材,充分发挥了教材的示范作用。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,对中学数学教学回归教材、重视挖掘教材价值、减轻过重的学业负担、实施素质教育、促进课程改革的深化具有良好的导向作用。

5,高考数学题库

可理解为三人一桌少一个,。。。少一个。所以x+1应该是3,5,7,9的公倍数,且x是11的整数倍

6,2021年高考数学试题权威评析来了

2021年高考数学试题权威评析来了   2021年高考数学试题权威评析来了,数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。   2021年高考数学试题权威评析来了1   2021年教育部考试中心命制了全国甲、乙卷的文、理科数学试卷,新高考Ⅰ卷、Ⅱ卷的数学试卷(不分文理),共6套数学试卷。   数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。试题突出数学本质,重视理性思维,坚持素养导向、能力为重的命题原则;倡导理论联系实际、学以致用,关注我国社会主义建设和科学技术发展的重要成果,设计真实问题情境,体现数学的应用价值。试卷稳步推进改革,科学把握必备知识与关键能力的关系,科学把握数学题型的开放性与数学思维的开放性,稳中求新,全面体现了基础性、综合性、应用性和创新性的考查要求。    一、发挥学科特色,彰显教育功能   高考数学命题始终坚持思想性与科学性的高度统一,发挥数学应用广泛、联系实际的学科特点,命制具有教育意义的试题以增强学生社会责任感,引导学生形成正确的人生观、价值观、世界观。试题运用我国社会主义建设和科技发展的重大成就作为试题情境,深入挖掘我国社会经济建设和科技发展等方面的学科素材,引导学生关注我国社会现实与经济、科技进步与发展,增强民族自豪感与自信心,增强国家认同,增强理想信念与爱国情怀。   1.关注科技发展与进步。新高考Ⅱ卷第4题以我国航天事业的重要成果北斗三号全球卫星导航系统为试题情境设计立体几何问题,考查考生的空间想象能力和阅读理解、数学建模的素养。   2.关注社会与经济发展。乙卷理科第6题以北京冬奥会志愿者的培训为试题背景,考查逻辑推理能力和运算求解能力。新高考Ⅰ卷第18题以“一带一路”知识竞赛为背景,考查了考生对概率统计基本知识的理解与应用。甲卷文、理科第2题以我国在脱贫攻坚工作取得全面胜利和农村振兴为背景,通过图表给出了某地农户家庭收入情况的抽样调查结果,以此设计问题,考查考生分析问题和数据处理的能力。   3.关注优秀传统文化。乙卷理科第9题以魏晋时期我国数学家刘徽的著作《海岛算经》中的测量方法为背景,考查考生综合运用知识解决问题的能力,让考生充分感悟到我国古代数学家的聪明才智。新高考Ⅰ卷第16题以我国传统文化剪纸艺术为背景,让考生体验从特殊到一般的探索数学问题的过程,重点考查考生灵活运用数学知识分析问题的能力。    二、坚持开放创新,考查关键能力   2020年10月,中共中央国务院《深化新时代教育评价改革总体方案》提出:稳步推进中高考改革,构建引导学生德智体美劳全面发展的考试内容体系,改变相对固化的试题形式,增强试题开放性,减少死记硬背和“机械刷题”现象。数学科高考积极贯彻《总体方案》要求,加大开放题的创新力度,利用开放题考查数学学科核心素养和关键能力,发挥数学科高考的选拔功能。   1.“举例问题”灵活开放。如新高考Ⅱ卷第14题的答案是开放的,给不同水平的考生提供了充分发挥自己数学能力的空间,在考查思维的灵活性方面起到了很好的作用。高考乙卷文、理科第16题有多组正确答案,有多种解题方案可供选择,考查了考生的空间想象能力,具有较好的选拔性。   2. “结构不良问题”适度开放。如甲卷理科第18题,试题给出部分已知条件,要求考生根据试题要求构建一个命题,给考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象。新高考Ⅱ卷第22题第(2)问体现了“结构不良问题”适度开放命题的科学性与素养导向、能力为重的命题原则,对逻辑推理能力、数学抽象能力、直观想象能力等作了很深入地考查,既有利于选拔,也有利于考生发挥好自己的数学能力水平。   3.“存在问题”有序开放。如新高考Ⅱ卷第18题设计具有开放性,基于课程标准,重点考查考生的逻辑推理能力和运算求解题能力,在体现开放性的同时也体现了思维的准确性与有序性。新高考Ⅰ卷第21题第(2)问有序开放问题探索的内容,要求考生运用解析几何的基本思想方法分析问题和解决问题,考查考生在开放的情境中发现主要矛盾的能力。    三、倡导理论联系实际,学以致用   2021年数学科高考在应用性进行重点探索,取得突破。试题注重理论联系实际,体现数学的应用价值,并让学生感悟到数学的应用之美。理论联系实际的试题,体现现代科技发展和现代社会生产等方面的特点,有机渗透数学建模、数据分析、逻辑推理等数学核心素养与数学思想方法的应用,对选拔与育人具有积极的意义。    1.取材真实情境,解决实践问题   如新高考Ⅱ卷第21题取材于生命科学中真实的问题,体现了概率在生命科学中的应用。试题考查了数学抽象、直观想象、逻辑推理等数学核心素养,重点考查了考生综合应用概率、数列、方程、函数等知识和方法解决实际问题的能力,体现了 “基础性,综合性,应用性,创新性”的考查要求。甲卷理科第8题以测量珠穆朗玛峰高程的方法之一——三角高程测量法为背景设计,情境真实,突出理论联系实际,要求考生能正确应用线线关系、线面关系、点面关系等相关几何知识,构建计算模型,同时考查了考生运用正弦定理等解三角形的知识和方法解决实际问题的能力。    2.关注青少年身心健康   身心健康是素质教育的核心内容,在高考评价体系的核心价值指标体系中,包含有健康情感的指标,要求学生具有健康意识,注重增强体质,健全人格,锻炼意志。数学试题对相关内容也有所体现。如高考甲卷理科第4题(文科第6题),以社会普遍关注的青少年视力问题为背景设计,重点考查了考生的数学理解能力和运算求解能力。    3. 关注现实生产生活   如高考乙卷文、理科第17题,以芯片生产中的刻蚀速率为原型,设计了概率统计的应用问题,考查了考生对于平均数、方差等知识的理解和应用,引导考生树立正确的人生观、价值观。新高考Ⅱ卷第6题,以某物理量的测量为背景,考查了正态分布基本知识的理解与应用,引导学生重视数学实验,重视数学的应用。   2021年数学试题很好地落实了“立德树人,服务选才,引导教学”的`核心功能,坚持高考的核心价值,突出学科特色,重视数学本质,发挥了数学科高考的选拔功能,对深化中学数学教学改革发挥了积极的导向作用。   2021年高考数学试题权威评析来了2    高考第一天结束后,哪些事情应该避免讨论?    1、不要讨论高考试卷,不要讨论题目的答案。   在这里,笔者用两个“不要”来做出解答。高考第一天一般考语文和数学,当第一天考试结束之后,学生会陆续离开考场,和自己的同学或者父母见面。这时候,大量的同学依照次序走出校门,然后大部分同学们会聚在一起,讨论高考的试卷以及高考的题目以及答案。   尤其是一些学习成绩中等的考生,他们对于自己的答案不确定,因此会参考学习成绩好的同学,看看自己的答案是否与他们相同,这种情况和现象是高考第一天结束之后的大忌。第一天高考结束之后,同学们不要讨论高考试卷,也不要讨论题目的答案,因为每个人的答案都是不一样的,当得知自己做错之后,心理会非常着急,后悔自己为什么答错了,这样的消极情绪会一直保持到第二天考试,因此考生要注意,第一天高考结束,不要讨论高考试卷,不要讨论题目的答案。    2、不要给自己估分。   很多同学有一个习惯,那是在平时学校考试的时候养成的,那就是每当考试结束之后都会自己估分,看一下自己的估分跟真实分数是否一致或者相差多少。而一个习惯一旦养成就很难改掉了。高考第一天结束之后,也有不少同学会在心底里为自己估分,好大致判断第一天的高考成绩。   如果平时估分的话还可以理解,但是在高考的时候,估分会对自己的心理造成很大的负担,如果考试顺利还好,做题比较顺畅,正确率比较高,这是一个正向的促进作用。一旦考试出现了失误,那个估分的时候就比较低,考生心理会承受一个很大的压力,这是不利于第二天参加高考的。   因此每一位考生都应该明白以上这两点,考试第一天结束后不要讨论高考试卷,不要讨论题目的答案,也不要随意给自己估分,这是对第二天的考试不利的。就算同学们想要讨论,那么等到高考全部结束之后再讨论,这是可以的。毕竟高考都结束了,讨论一下题目也不会影响你的发挥,也不会对你的成绩造成影响。希望大家可以将文章传递给你的好友,让我们祝愿2020年高三考生心想事成,前程似锦!

7,高考数学题

y=3/2x-1/2第一题
1)求导,2)分离常数再求最值,3)自己变形…爪机手打

8,高考数学大题

(1)由于PA⊥平面ABC,所以PA⊥BC,又由条件,AC⊥BC,所以 BC⊥平面PAC(2)DE//BC,BC⊥平面PAC,所以DE⊥平面PAC所以 ∠DAE就是AD与平面PAC所成的角。设PA=AB=2a,在底面ABC中,∠BAC=30o,BC=(1/2)AB=a.又D是PB的中点,所以E是PC的中点,所以DE=(1/2)BC=a/2而易求得AD=√2a所以 sin∠DAE=DE/AD=√2/4(3)存在。由(1)得 平面PBC⊥平面PAC令AE⊥PC,则AE⊥平面PBC于是平面ADE⊥平面PBC,二面角A-DE-P为直二面角。易求得 AC=√3a,PC=√7a令AE⊥PC,则由 AP2=PE?PC,得PE=4a/7 望采纳,谢谢

9,数学高考题

(全国一20).(本小题满分12分) (注意:在试题卷上作答无效) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (ⅱ) 表示依方案乙所需化验次数,求 的期望.
f(x)=2x/(x的平方+1)=2/(x+1/x)然后根据对勾函数就可以出来单调性了.第1题的两根小于3是什么意思.不理解.
第一题:第一步:令△≥0第二步:用求根公式,使最大根小于3第二题:分子分母同时除以X,令g(x)=x+1/xg(x)在(0,1)上单调递减,在(1,正无穷)上单调递增。所以f(x)在(0,1)上单调递增,在(1,正无穷)上单调递减。易得值域为(负无穷,1)应该没错吧
哪个省出这样的高考题??

10,高考数学真题

我这里有04到09的全国各地真题。留个邮箱。全国统一考试数学(人教版)(理工农林医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至1页,第Ⅱ卷3至10页。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。2.每小题选出答案后,用铅笔在答题卡上对应题目的答案涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。3.本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。参考公式:三角函数的和差化积公式 一、选择题1.设集合 , ,则集合 中元素的个数为 ( ) A.1 B.2 C.3 D.42.函数 的最小正周期是 ( ) A. B. C. D. 3.设数列 是等差数列,且 , 是数列 的前 项和,则 ( ) A. B. C. D. 4.圆 在点 处的切线方程为 ( ) A. B. C. D. 5.函数 的定义域为 ( ) A. B. C. D. 6.设复数 的辐角的主值为 ,虚部为 ,则 = ( ) A. B. C. D. 7.设双曲线的焦点在 轴上,两条渐近线为 ,则该双曲线的离心率 ( ) A. B. C. D. 8.不等式 的解集为 ( ) A. B. C. D. 9.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 ( ) A. B. C. D. 10.在△ABC中,AB=3,BC= ,AC=4,则边AC上的高为 ( ) A. B. C. D. 11.设函数 ,则使得 的自变量 的取值范围为( ) C. D. 12.将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( ) A.12种 B.24种 C.36种 D.48种第Ⅱ卷二、填空题(每小题4分,共16分.把答案填在题中横线上,解答应写出文字说明,证明过程或演算步骤.)13.用平面 截半径为 的球,如果球心到平面 的距离为 ,那么截得小圆的面积与球的表面积的比值为 . 14.函数 在区间 上的最小值为 . 15.已知函数 是奇函数,当 时, ,设 的反函数是 ,则 .16.设 是曲线 上的一个动点,则点 到点 的距离与点 到 轴的距离之和的最小值为 .三、解答题(6道题,共76分)17.(本小题满分12分)已知 为锐角,且 ,求 的值.18.(本小题满分12分)解方程 .19.(本小题满分12分)某村计划建造一个室内面积为800 的矩形蔬菜温室。在温室内,沿左.右两侧与后侧内墙各保留1 宽的通道,沿前侧内墙保留3 宽的空地。当矩形温室的边长各为多少时?蔬菜的种植面积最大。最大种植面积是多少?20.(本小题满分12分)三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,(1)求证:AB ⊥ BC;(2)设AB=BC= ,求AC与平面PBC所成角的大小.21.(本小题满分12分)设椭圆 的两个焦点是 与 ,且椭圆上存在一点 ,使得直线 与 垂直.(1)求实数 的取值范围;(2)设 是相应于焦点 的准线,直线 与 相交于点 ,若 ,求直线 的方程. (Ⅱ)准线L的方程为 设点Q的坐标为 ,则22.(本小题满分14分)已知数列 的前 项和 满足 .(1)写出数列 的前三项 ;(2)求数列 的通项公式;(3)证明:对任意的整数 ,有 .

文章TAG:数学高考卷数学  高考  学数学  
下一篇
展开更多