1,如何判断奇偶函数

利用性质,f(-X)=f(X)为偶,f(-X)=-f(X)为奇,前提定义域是杏关于原点对称.
首先看定义域是否对称。若不对称,则一定为非奇非偶函数。若对称,再判定奇函数还是偶函数。奇函数f(-x)=-f(x).,关于原点对称。偶函数f(x)=f(-x),关于y轴对称。
函数图像或者f(x),-f(x),f(-x)的关系
看图像
奇函数关于原点对称 偶函数关于y轴对称 奇函数满足f(-x)=-f(x) 偶函数满足f(x)=f(-x)

如何判断奇偶函数

2,如何判断一个函数的奇偶性一共有几种方法

判断函数的奇偶性共有四种方法。1、定义法:利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数。2、求和(差)法:若f(x)-f(-x)=2f(x),则f(x)为奇函数。若f(x)+f(-x)=2f(x),则f(x)为偶函数。3、用求商法判断若f(-x)/f(x)=-1,(f(x)≠0)则f(x)为奇函数。若f(-x)/f(x)=1,(f(x)≠0)则f(x)为偶函数。4、图像判断法:奇函数的图像关于原点中心对称,而偶函数的图像关于Y轴轴对称。注意:如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0。注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数。扩展资料验证一个函数的奇偶性的前提要求函数的定义域必须关于原点对称。但由单调性不能倒导其奇偶性。奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。参考资料来源:搜狗百科-函数奇偶性
1、奇函数、偶函数的定义中,首先函数定义域D关于原点对称。它们的图像特点是:奇函数的图像关于原点对称,偶函数的图像关于X轴对称。即f(-x)=-f(x)为奇函数,f(-x)=f(x)为偶函数 2、判断函数的奇偶性大致有下列二种方法:   (1)用奇、偶函数的定义,主要考察f(-x)是否与-f(x) ,f(x) ,相等。   (2)利用一些已知函数的奇偶性及下列准则:两个奇函数的代数和是奇函数;两个偶函数的代数和是偶函数;奇函数与偶函数的和既非奇函数,也非偶函数;两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;奇函数与偶函数的乘积是奇函数。
一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

如何判断一个函数的奇偶性一共有几种方法

3,怎样判断函奇偶性

一、单调性判断法1、若在对称区间上的单调性是相反的,则该函数为偶函数。2、若在整个定义域上的单调性一致,则该函数为奇函数。二、复合函数判断法可将函数拆分为两个函数,根据这两个函数的特性判断原函数的奇偶性:1、 两个偶函数相加所得的和为偶函数。2、 两个奇函数相加所得的和为奇函数。3、两个偶函数相乘所得的积为偶函数。4、 两个奇函数相乘所得的积为偶函数。5、一个偶函数与一个奇函数相乘所得的积为奇函数。6、偶函数的和差积商是偶函数。7、奇函数的和差是奇函数。三、绝对值判断法1、奇函数的绝对值为偶函数。2、偶函数的绝对值为偶函数。扩展资料函数奇偶性中的奇偶数若数字满足xmod2=1,那么它是奇数。若数字满足xmod2=0,那么它是偶数。例如:m=xmod2 ,x=7的话,m=1参考资料来源:搜狗百科-奇偶性
判定奇偶性四法:  (1)定义法  用定义来判断函数奇偶性,是主要方法 . 首先求出函数的定义域,观察验证是否关于原点对称. 其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性.  (2)用必要条件.  具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件.  例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性.  (3)用对称性.  若f(x)的图象关于原点对称,则 f(x)是奇函数.  若f(x)的图象关于y轴对称,则 f(x)是偶函数.  (4)用函数运算.  如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)?g(x)是偶函数. 简单地,“奇+奇=奇,奇×奇=偶”.  类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇
首先要判断定义域, 奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。1、 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。2、 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。3、 如果对于函数定义域内的存在一个a,使得 f(a)不等于 f(-a),存在一个b,使得 f(-b) 不等于f(b),那么这个函数是非奇非偶函数。拓展资料在f(x),g(x)的公共定义域上:1、奇函数±奇函数=奇函数2、 偶函数±偶函数=偶函数3、 奇函数×奇函数=偶函数4、 偶函数×偶函数=偶函数4、 奇函数×偶函数=奇函数
.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
奇偶性 1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。 f(x)为奇函数《==》f(x)的图像关于原点对称 点(x,y)→(-x,-y) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。 偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。 单调函数 一般地,设函数f(x)的定义域为I: 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)< f(x2).那么就说f(x)在这个区间上是增函数。 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。 如果函数y=f(x)在某个区间是增函数或减函数。那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间,在单调区间上增函数的图像是上升的,减函数的图像是下降的。 注意:(1)函数的单调性也叫函数的增减性; (2)函数的单调性是对某个区间而言的,它是一个局部概念; (3)判定函数在某个区间上的单调性的方法步骤有两种主要方法: 1)定义法 a.设x1、x2∈给定区间,且x1<x2. b.计算f(x1)- f(x2)至最简。 c.判断上述差的符号。 2)求导法 利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是增函数,导函数值小于0,说明是减函数,前提是原函数必须是连续的。

怎样判断函奇偶性


文章TAG:奇偶函数怎么判断奇偶  偶函数  函数  
下一篇