鸡兔同笼教案,四年级下册数学同步数学广角第1课时鸡兔同笼怎么做
来源:整理 编辑:好学习 2023-07-12 00:09:35
1,四年级下册数学同步数学广角第1课时鸡兔同笼怎么做
1、(头数×4-腿数)÷2=鸡数2、(腿数-头数×2)÷2=兔数两种方法。望采纳
2,四年级下册鸡兔同笼ppt
72÷2-12=36-12=24(鹤)24-12=12(龟)兔子=(腿数-总只数*2)/2鸡=总只数-兔子数朋友,请及时采纳正确答案,您采纳正确答案,您也可以得到财富值,谢谢!
3,小学数学六年级课程鸡兔同笼
用方程很简单的: 先设其中一种动物(如鸡)是“x”,那另一种动物(如兔)就是“头数-x” 列方程: 用x乘以2就是鸡一共有多少腿 用“头数-2”乘以4就是兔一共有多少腿 上面两个算式加起来不就是一共有多少腿吗,形成一个等式。 完整列式: 解:设鸡有x只,兔有头数-x只。 2x+4×(头数-x)=总头数
4,鸡兔同笼教案
这个周末休息2天,说明下次工作从周一开始每个循坏总共9天,一周7天即是求9和7的最大公约数最大公约数是63=7x9=9x7所以至少过9周才能再在周末休息例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只? 分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。 解:①鸡有多少只? (4×6-128)÷(4-2) =(184-128)÷2 =56÷2 =28(只) ②免有多少只? 46-28=18(只) 答:鸡有28只,免有18只。 我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数 当然,也可以先假设全是鸡。 例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢? 假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。 解:(2×100-80)÷(2+4)=20(只)。 100-20=80(只)。 答:鸡与兔分别有80只和20只。
5,鸡兔同笼教学反思
例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只? 分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。 解:①鸡有多少只? (4×6-128)÷(4-2) =(184-128)÷2 =56÷2 =28(只) ②免有多少只? 46-28=18(只) 答:鸡有28只,免有18只。 我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数 当然,也可以先假设全是鸡。 例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢? 假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。 解:(2×100-80)÷(2+4)=20(只)。 100-20=80(只)。 答:鸡与兔分别有80只和20只。《鸡兔同笼》教学反思 《鸡兔同笼》教学反思 对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。例:鸡兔同笼,有20只头,54条腿,鸡、兔各有多少只?师生共同经历了三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?引导学生画图的方法去试:先画20个圆圈表示20个头,再在每个动物下面画两条腿,20只动物只用了40条腿,还多出14条腿,把剩下的14条腿要给其中的几只动物添上呢?(7只动物分别添2条腿)。这7只就是兔子,另外的13只就是鸡。这时候有学生问能把动物都看成是4条腿的吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。http://blog.cersp.com/userlog17/35903/archives/2006/208691.shtml
文章TAG:
鸡兔同笼 教案 四年 四年级 鸡兔同笼教案