本文目录一览

1,高中数学介绍一下椭圆的准线方程及其性质

椭圆椭圆上P点坐标(x0,y0)0<c/a=(xo+p/2) /丨PF丨<1当动点P到定点O和到定直线X=Xo的距离之比恒小于1时,该直线便是椭圆的准线圆锥曲线上任意一点到一焦点的距离与其对应的准线(同在Y轴一侧的焦点与准线)对应的距离比为离心率。椭圆上任意一点到焦点距离与该点到相应准线距离的比等于离心率e.

高中数学介绍一下椭圆的准线方程及其性质

2,高中数学双曲线椭圆有什么好用知识点

椭圆与双曲线的经典性质50条 <p>看如下链接,可以下载</p> <p><a href="http://wenwen.soso.com/z/urlalertpage.e?sp=shttp%3a%2f%2fwww.gzmath.com%2fhtml%2f2007-3-7%2f2007371703421.htm" target="_blank">http://www.gzmath.com/html/2007-3-7/2007371703421.htm</a></p>
焦点,焦距等性质

高中数学双曲线椭圆有什么好用知识点

3,高二数学 椭圆 知识点

一、课标要求 1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用; 2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质; 3.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质; 4.了解圆锥曲线的简单应用; 5.理解数形结合的思想 二、考点回顾1——椭圆: 1.利用待定系数法求标准方程: (1)求椭圆标准方程的方法,除了直接根据定义外,常用待定系数法(先定性、后定型、再定参)。 椭圆的标准方程有两种形式,所谓“标准”,就是椭圆的中心在原点,焦点在坐标轴上,焦点F1、F2的位置决定椭圆标准方程的类型,是椭圆的定位条件;参数a、b 决定椭圆的形状和大小,是椭圆的定形条件。对于方程x^2/m+y^2/n=1 ,m>0,n>0若m>n ,则椭圆的焦点在x轴上;若m0,n>0 ,可以避免讨论和繁杂的计算,也可以设Ax^2+By^2=1(A>0,B>0) ,这种形式在解题中更简便。 2.椭圆定义的应用: 平面内一动点与两个定点F1 、F2 的距离之和等于常数2a ,当2a >|F1F2 |时,动点的轨迹是椭圆;当 2a=|F1F2 |时,动点的轨迹是线段F1F2 ;当 2a<|F1F2 |时,轨迹为存在。 3.椭圆的几何性质: (1)设椭圆的方程x^2/a^2+y^2/b^2=1 上任意一点为P ,则OP^2=x^2+y^2 ,当x=-a,a时有最大值 ,这时P在长轴端点A1或A2处。 (2)椭圆上任意一点P 与两焦点F1F2 , 构成三角形 称之为焦点三角形,周长为2a+2c 。 (3)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形的边长,有a^2=b^2+c^2 。 4.直线与椭圆的相交问题 在解决有关椭圆的问题时,要先画出图形,解题时重视方程的几何意义和图形的辅助作用,将对几何图形的研究转化为对代数式的研究,同时又要理解代数问题的几何意义。数形结合的思想方法是解析几何中基本的思想方法。解析几何的本质是用代数研究几何,如求轨迹方程、范围问题等,几乎都与函数有关,实质即将几何条件(性质)表示为动点坐标(x,y) 的方程或函数关系。因此,自觉地运用函数方程的观点是解此类问题的关键。

高二数学 椭圆 知识点

4,高中数学有关圆的知识点公式解题方法什么的拜托了

(一)圆的标准方程 1. 圆的定义:平面内到一定点的距离等于定长的点的轨迹叫做圆。定点叫圆的圆心,定长叫做圆的半径。 2. 圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2。 说明: (1)上式称为圆的标准方程。 (2)如果圆心在坐标原点,这时a=0,b=0,圆的方程就是x2+y2=r2。 (3)圆的标准方程显示了圆心为(a,b),半径为r这一几何性质,即(x-a)2+(y-b)2=r2----圆心为(a,b),半径为r。 (4)确定圆的条件 由圆的标准方程知有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定.因此,确定圆的方程,需三个独立的条件,其中圆心是圆的定位条件,半径是圆的定型条件。 (5)点与圆的位置关系的判定 若点M(x1,y1)在圆外,则点到圆心的距离大于圆的半径,即(x-a)2+(y-b)2>r2 ; 若点M(x1,y1)在圆内,则点到圆心的距离小于圆的半径,即(x-a)2+(y-b)2<r2 ;(二)圆的一般方程 任何一个圆的方程都可以写成下面的形式: x2+y2+Dx+Ey+F=0① 将①配方得: ②(x+D/2)2+(y+E/2)2=D2+E2-4F/4 当时,方程①表示以(-D/2,-E/2)为圆心,以为半径的圆; 当时,方程①只有实数解,所以表示一个点(-D/2,-E/2); 当时,方程①没有实数解,因此它不表示任何图形。 故当时,方程①表示一个圆,方程①叫做圆的一般方程。 圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点: (1)和的系数相同,且不等于0; (2)没有xy这样的二次项。 以上两点是二元二次方程表示圆的必要条件,但不是充分条件。 要求出圆的一般方程,只要求出三个系数D、E、F就可以了。(三)直线和圆的位置关系 1. 直线与圆的位置关系 研究直线与圆的位置关系有两种方法: (l)几何法:令圆心到直线的距离为d,圆的半径为r。 d>r直线与圆相离;d=r直线与圆相切;0≤d<r直线与圆相交。 (2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一元二次方程,其判别式为Δ。 △<0直线与圆相离;△=0直线与圆相切;△>0直线与圆相交。 说明:几何法研究直线与圆的关系是常用的方法,一般不用代数法。 2. 圆的切线方程 (1)过圆x2+y2=r2上一点P(x0,y0)的切线方程是x0x+y0y=r2 (2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2 ; (3)过圆 x2+y2+Dx+Ey+F=0(D2+E2-4F>0)上一点P(x0,y0)的切线方程是x0x+y0y+D·(x0+x)/2+E·(y0+y)/2+F=0 3. 直线与圆的位置关系中的三个基本问题 (1)判定位置关系。方法是比较d与r的大小。 (2)求切线方程。若已知切点M(x0,y0),则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2 ; 若已知切线上一点N(x0,y0),则可设切线方程为y-y0=k(x-x0),然后利用d=r求k,但需注意k不存在的情况。 (3)关于弦长:一般利用勾股定理与垂径定理,很少利用弦长公式,因其计算较繁,另外,当直线与圆相交时,过两交点的圆系方程为 x2+y2+Dx+Ey+F+λ(Ax+By+C)=0 (四)圆与圆的位置关系 1. 圆与圆的位置关系问题判定两圆的位置关系的方法有二:第一种是代数法,研究两圆的方程所组成的方程组的解的个数;第二种是研究两圆的圆心距与两圆半径之间的关系。第一种方法因涉及两个二元二次方程组成的方程组,其解法一般较繁琐,故使用较少,通常使用第二种方法,具体如下: 圆(x-a1)2+(y-b1)2=r12与圆(x-a2)2+(y-b2)2=r22的位置关系,其中r1>0,r2>0 设两圆的圆心距为d,则d=根号下(a1-a2)2+(b1-b2)2 当d>r1+r2时,两圆外离; 当d=r1+r2时,两圆外切; 当|r1-r2|<d<|r1+r2|时,两圆相交; 当d=|r1+r2|时,两圆内切; 当0<d<|r1-r2|时,两圆内含两圆位置关系的问题同直线与圆的位置关系的问题一样,一般要转化为距离间题来解决。另外,我们在解决有关圆的问题时,应特别注意,圆的平面几何性质的应用。
圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 2.构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决.PS: 仅供参考

文章TAG:高中  高中数学  数学  椭圆  高中数学椭圆知识点  
下一篇