1,第九章 整式

A的3+3+2+1+1次方
A的(3的2次方+1)次方

第九章 整式

2,初一数学整式

(—3y-1)×(_3y-1____) =[-(3y+1)][-(1-3y)] =1-9y2

初一数学整式

3,初一数学试讲讲整式里面单项式这一小节应该注意些什么细节

主要就是单项式的运算吧
搜一下:初一数学试讲,讲整式里面单项式这一小节,应该注意些什么细节?

初一数学试讲讲整式里面单项式这一小节应该注意些什么细节

4,第二章整式的加减

a=3时:第一边=3,第二边=9,第三边=12,第四边=24 因为3+9+12=24 即较短三边与第四边重合 所以不能构成四边形 它的形状为线段 a=7时:第一边=7,第二边=17,第三边=24,则第四边=0 因为第四边长度为0 所以这个图形只有三边 又因为7+17=24 所以这个图形也为线段

5,整式 初一数学

X^n-2 - 3X^n +0.5X^n-1 - X^n+1 =(X^n-3X^n+0.5X^n-X^n)-(2+1-1)=-2.5X^n-2
原式=(x^n+3x^n+0.5x^n-x^n)-(-2-1+1)=3.5x^n-2
-2.5X*n-2

6,整式的乘除与因式分解总结

一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。15.2 乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。接着,在第一小节安排了平方差公式的教学,教科书首先安排了下一个“探究”栏目,安排了3个题目,让学生通过计算,总结三个题目结果的共同点,发现其中的规律。接着,教科书推证了平方差公式,并进一步借助于几何图形对公式作了直观解释,让学生能更好地理解此公式。最后,举例说明运用平方差公式进行有关的计算。第二小节教科书设计了与第一小节类似的教学过程,引进了乘法的完全平方公式。为了满足整式运算的需要,在本小节引进了添括号法则,这也是很重要的整式运算知识。 15.3 整式的除法整式的除法也是整式四则运算的重要组成部分。本节也分为两个小节。同底数幂的除法是学习整式除法的基础和关键,因此教科书在第一小节中首先介绍同底数幂除法的性质。对于同底数幂除法,这里只先讨论所得商仍是整式的情形,对于所得商是分式的情形将在后续内容引入负整数指数幂的概念以后再讨论。能熟练地进行单项式除以单项式的除法是进行多项式除以单项式等一般的整式除法的前提。在第二小节,教科书根据乘、除互为逆运算的关系,并以分配律、同底数幂的除法为依据,由计算具体的实例得到单项式除以单项式的除法法则。同样地,对于单项式除以单项式的除法,讨论的问题也都在被除式中字母的指数大于或等于除式中字母的指数的限制条件范围内。对于多项式除以单项式,教科书是从计算来导出运算法则的,根据是乘除法互为逆运算以及分配律。可以看出,法则的基本点是把多项式除以单项式转化为单项式的除法,而单项式除法是已经学习并掌握了的。在本章中,不讨论多项式除以多项式等一般性的问题。 15.4 因式分解因式分解是解析式的一种恒等变形,因式分解不但在解方程等问题中极其重要,在数学科学其他问题和一般科学研究中也具有广泛应用,是重要的数学基础知识。因式分解的方法一般包括提公因式法、公式法、分组分解法、十字相乘法、待定系数法等。本教科书安排了多项式因式分解比较基本的知识和方法,它包括因式分解的有关概念,整式乘法与因式分解的区别与联系,因式分解的两种基本方法,即提公因式法和公式法。两种方法分别安排在第1和第2小节。
一、整式的四则运算 1. 整式的加减 合并同类项是重点,也是难点。合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准??字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。 2. 整式的乘除 重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握。因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。 整式四则运算的主要题型有: (1)单项式的四则运算 此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。 (2)单项式与多项式的运算 此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。 二、因式分解 难点是因式分解的四种基本方法(提公因式法、运用公式法、分组分解法、十字相乘法)。因式分解是整式乘法的逆向变形,因式分解的方法的引入要紧紧抓住这一点。 三、利用好选学内容 “阅读与思考”和“观察与猜想”是课本上的两个选学栏目,其内容是有关知识的拓展与延伸。“杨辉三角”不但可以使同学们了解一些二项展开式中各项系数的规律,增强数学修养,还可以潜移默化地培养同学们的爱国情怀

7,给我一篇整式乘法的教案

整式的乘法公式教案课题: 完全平方公式 教学目标 ①经历探索完全平方公式的过程,使学生感受从一般到特殊的研究方法,进一步发展符号感和推理能力.②会推导完全平方公式,能说出公式的结构特征,并能运用公式进行简单计算.③了解公式的几何背景,进一步培养学生用数形结合的方法解决问题的能力.教学重点 (a±b)2=a2±2ab+b2的推导及应用.教学难点 公式的结构特征及教科书P184例5.教学准备 投影仪;多媒体课件;小黑板.边长为a、b的两种正方形卡片每小组一张;长为a、宽为b的长方形卡片每小组一张.教学过程(师生活动) 设计理念引入 同学们,前一节课我们已经探究了一种特殊形式的多项式乘法,学会了平方差公式的一些简单应用.今天我们在这个基础上要继续学习另一种特殊形式的多项式乘法.下面请同学们像上一节课一样,自己来探究下面的问题: 。在推导公式的过程中,要重视学生对运算依据的理解与叙述,强调推理,培养他们的代数推理能力、用数学语言进行表达的能力。探究 计算下列各式,你能发现它们的运算形式与结果有什么规律吗? (1)(p+1)2=(p+1)(p+1)=_____ (2)(m+2)2=_____ (3)(p-1)2=(p-1)(p-1)=_____ (4)(m-2)2=_____ 引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括. 举例:再举几个这样的运算例子.让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报。 (2)这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的特征,便于进一步应用公式计算。验证 我们再来计算(a+b)2,(a-b)2. 公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例—归纳—猜想—验证一用数学符号表示. 概括 完全平方公式及其形式特征. 教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因。 还可以引导学生将(a-b)2的结果用(a+b)2来解释:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2 (3)对公式(a-b)2=a2-2ab+b2的多角度解释,是为了加深学生对公式中字母a、b的广泛意义的理解,并再次让学生体会加、减法的互相转化与统一。应用 教科书第182页例3 运用完全平方公式计算: (1)(4m+n)2 (2)(y-12)2 引导学生用如下的填空形式完成例3:解:(1)∵(4m+n)2是____与____和的平方, 可由学生口答完成,教师多媒体展示结果,提高课堂效率。 (1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解. (2)在具体计算时,当二项式的项不再是单独的数或字母时,或者项是小数时,往往容易出现运算错误.教科 教科书第183页例4 运用完全平方公式计算: (1)1022 (2)992 此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性. 运用完全平方公式进行数的简便运算的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,教学时可让学生自己独立解决此问题。解释 (1)现有下图所示三种规格的卡片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义: (2)你能根据下图(教科书第182页图15.3—3)说明(a-b)2=a2-2ab十b2吗? 第(1)小题由小组合作共同完成拼图游戏,比一比哪个小组快?第(2)小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2。 (1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.(2)此处将教科书的图15.3-2改为由学生自主拼图得到公式,是因为前一节课学生已初次接触了这样的数与形结合解释公式的思想方法,利用这个拼图游戏,可进一步促使学生关注几何与代数的联系,增进学生的认知和对公式的记忆 (3)教科书的图15.3-3比较难读懂,可引导学生合作交流得出代数恒等式。思考 (a+b)2与(-a-b)2相等吗?(a-b)2与(b-a)2相等吗?(a-b)2与a2-b2相等吗?为什么? 组织学生进行讨论,通过自主推导,互相合作交流,共同解决难题. 拓展 教科书第184,页例5 运用乘法公式计算, (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2 讲解此例之前可先让学生自学教科书第183页的“添括号法则”并完成教科书第184页练习1.然后给出例5的题目,让学生思考该选择哪个公式.第(1)小题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a、b对照,其中-2y+3=-(2y-3),故应运用平方差公式.第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式。 在解此例的过程中,应注意边辨析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点。 (1)“添括号法则”采用自学的方法得出,可培养学生一定的自学能力。 (2)有些整式相乘需要先作适当变形,然后再用公式,在此可通过解题思路的分析,注意公式中字母的广泛意义,并渗透换元的思想。其中第二小题的结果特征明显,可作为一个新的乘法公式。小结 谈一谈:你对完全平方公式有了哪一些认识?它与平方差公式有什么区别和联系? 梳理知识,形成体系。作业 1. 必做题:教科书第185页习题15.3第二大题的(1)、(3)、(4)、(5);第三大题的(2);第四大题. 书本上有关完全平方公式的习题量较多,层次也比较明显, 设计思想 本节课是在学习了《平方差公式》之后进行的,学习的方法与上节课类似,但本课时中的内容多,难点也较多;所以对课堂教学的组织要求就更高.所以在设计活动时,我紧紧围绕着“完全平方公式如何得到和应用”这一中心问题展开,并根据活动情况不断地变换问题,以问题为核心调动学生参与活动的兴趣与积极性,在每一个教学环节都对学生提出丁不同的要求,使知识层层深入,环环紧扣.
整式的乘法同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式:(a十b)(a一b)=a2-b2(a±b)2=a2±2ab+b2(a±b)(a2±ab+b2)=a3±b3具体要求:(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。

文章TAG:整式教案整式  教案  第九  
下一篇