1,东莞农村商业银行打钱到达州农业银行都一天了怎么还不到账急求

异地跨行转账需要三个工作日才到账。

东莞农村商业银行打钱到达州农业银行都一天了怎么还不到账急求

2,为什么注射成型工艺要使用密炼机陶瓷密炼机价格报价

注射成型的工艺的前段工艺是造粒,造粒是将小颗粒的粉末制成大颗粒或团粒的过程,常用来改善细粉的充填性。造粒的好坏直接关系到最终产品的品质。因此,在造粒之前的混炼工艺也就显得尤为重要。所以,注射成型工艺要用到密炼机、造粒机。希望能帮到你

为什么注射成型工艺要使用密炼机陶瓷密炼机价格报价

3,有东莞密炼机的生产厂家吗推荐一个

厚街寮夏的那个利拿不错 老板挺热心 性价比挺高的

有东莞密炼机的生产厂家吗推荐一个

4,中国密炼机三大品牌

中国密炼机三大品牌为:湖南益阳橡塑、厦门威伯伦科、青岛软控。益阳橡胶塑料机械集团有限公司(原益阳橡胶机械厂)是国内专业生产大重型橡胶塑料机械成套设备的主要骨干企业。企业始建于1970年,隶属于中国化工集团公司旗下的中国化工装备总公司。企业具备雄厚的产品研发和制造能力。拥有400余名专业技术人员,科研开发平台完善,设有国家级企业技术中心、博士后科研工作站。厦门威伯伦科技有限公司:威伯伦于1981年成立于台湾, 近40年的经验累计及不断研发创新,超过5000台的客户口碑证,威伯伦俨然已成为全球专业的密炼机大厂之一;并于2019年在福建厦门投资及阶段性建设新厂,另外公司启动了100年永续经营计划,阶段性注入新兴人才培育,使得公司企业文化有所传承,专业技术能与时代接轨,让客户拥有了永久性的配合供应商。厦门威伯伦是国家级高新技术企业,福建省明星企业,创新科技名优研发企业,并于2021年登录两岸股权交易中心,企业代码:867467;总部入驻清华海峡研究院。是中国3A级信用企业,中国橡胶工业协会机械模具分会会员单位,福建省重点推荐民营企业,福建省塑料行业协会理事单位;签约高分子、金属、陶瓷领域教授15名,与多家高校有产学研合作,且与高校拥有联合实验室;是专业从事研发设计,制造销售,售后维修服务为一体的金属陶瓷橡塑机械科技企业。公司愿景:让中国混炼技术与世界同步。服务于高分子材料、石墨烯材料、先进陶瓷、粉末冶金等新材料企业,核心产品有:转矩流变仪,橡胶密炼机,金属密炼机,陶瓷密炼机,密炼造粒一体机,开炼机,双螺杆挤出机,平板硫化机等。公司先后通过了ISO 9001,知识产权管理体系,高新技术产品的认证。拥有强大的生产能力和拥有先进的技加设备如:10台五轴数控加工中心,4台数控车床,5台慢走丝等进口加工设备。公司拥有独立的实验室,各种材料实验设备提供给客户参观/试配方/打样,专业的研发设计团队可满足根据客户的特殊非标要求量身定做机型,得到广大客户的认可及好评。青岛软控:软控股份有限公司成立于2000年,以先进技术为核心,以信息技术为手段,以机械设备为载体,为企业提供机电一体化、信息化解决方案,致力于成为橡胶轮胎、印钞油墨、电力等行业的应用软件开发商、信息系统集成商和成套装备供应商,已通过了ISO9001:2000质量管理体系认证和软件企业CMM4级国际认证,是国家重点高新技术企业、国家火炬计划软件产业基地骨干企业和国家规划布局内重点软件企业。2006年10月18日,公司在深圳证券交易所成功上市。

5,想知道 东莞市 东莞赞扬机械有限公司 在哪

东莞市塘厦赞扬机械,位于广东东莞市塘厦镇莆心湖管理区,近龙林高速出口。

6,氮化硅陶瓷粉体一般密炼多久

低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及应用与流程文档序号:26193708发布日期:2021-08-06 18:47阅读:88来源:国知局导航: X技术> 最新专利>无机化学及其化合物制造及其合成,应用技术本发明涉及先进结构陶瓷技术领域,具体涉及一种低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及其应用。背景技术:氮化硅(si3n4)是一种性能优异的高温高强度结构陶瓷,具有良好的室温及高温机械性能,强度高、耐磨损、抗热震、抗化学腐蚀,能够广泛应用于航空、机械、化工等领域。特别是其β相的氮化硅具有超过170w/m.k的热导率,特别适合作为高端igbt散热基板使用。但氮化硅(si3n4)的化合价是以强共价键为主,烧结驱动力小,传统固相烧结难以将其烧结致密。针对氮化硅(si3n4)陶瓷烧结,研究人员开发了采用添加烧结助剂,然后采用常压烧结方法、气压烧结方法和反应烧结等烧结方法实现烧结。传统的烧结助剂为氧化钇、氧化镁、氧化铝等氧化物材料,该类烧结助剂本身的熔点高于1700℃,导致其形成液相温度很高,烧结动力不足;另外氧化钇等氧化物材料在烧结温度下,不具挥发也不会生成氮化物相,烧结后作为杂质第二相残余在晶界处,阻碍了声子振动,从而降低了热导率,不利于提升散热基板的导热性能。技术实现要素:有鉴于此,本发明针对现有技术存在之缺失,其目的之一是提供一种低温烧结高导热氮化硅陶瓷粉体,该陶瓷原料粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%<氮化硅<100%,镁硅合金组合物的质量百分比为0%<镁硅合金组合物<15%,通过镁硅合金组合物的镁在烧结过程中去除氮化硅陶瓷粉体表面的氧化层,提升陶瓷烧结活性。优选的,镁硅合金组合物氧含量低于2.5%。优选的,镁硅合金组合物中金属硅质量百分比为31.5%~36.5%。优选的,氮化硅陶瓷粉体中的氮化硅的d50为0.3μm~1.0μm,镁硅合金组合物的d50为1.0μm~5μm。本发明的目的之二,还提供了一种低温烧结高导热氮化硅陶瓷,该低温烧结高导热氮化硅陶瓷使用上述的低温烧结高导热氮化硅陶瓷粉体制备得到。本发明的目的之三,是提供了该低温烧结高导热氮化硅陶瓷的制备方法,包括以下步骤:a)将质量百分比为85%<氮化硅<100%的氮化硅陶瓷粉体与质量百分比为0%<镁硅合金组合物<15%的镁硅合金组合物粉体均匀混合;b)将步骤a)混合粉体成型得到毛坯;c)将步骤b)得到的毛坯在氮气气氛下烧结。优选的:步骤c)中的炉内压力为0.5mpa~10mpa,烧结温度为1380℃~1520℃,保温时间1h~4h。优选的,镁硅合金组合物氧含量低于2.5%,镁硅合金组合物中金属硅质量百分比为34.3%≤镁硅合金组合物≤35.4%。优选的,步骤b)中成型工艺为注塑成型,其中注塑成型的高分子混合粘结剂为以聚甲醛为主的混合粘结剂,包括聚甲醛、聚丙烯和高密度聚乙烯。本发明的目的之四,是提供了一种高导热陶瓷基板、陶瓷外观结构件、陶瓷结构件产品,该产品使用上述发明的低温烧结高导热氮化硅陶瓷材料制备,并且可以采用上述的低温烧结高导热氮化硅陶瓷的制备方法得到。本发明的有益效果:本发明提供一种低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及其应用,该陶瓷粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%<氮化硅<100%,镁硅合金组合物的质量百分比为0%<镁硅合金组合物<15%。1)、采用镁硅合金组合物取代传统的氧化镁等氧化物烧结助剂,利用了镁硅合金低熔点特性,从而在较低的烧结温度下实现了液相烧结。2)、通过镁硅合金组合物的镁的高活性,在烧结过程中单质镁通过氧化还原反应与氮化硅表面的氧化硅氧化层反应,夺去氧原子,从而露出新鲜的氮化硅表面参与烧结,提升陶瓷烧结活性。3)、由于镁属于高活性金属,特别是镁粉极容易氧化生成氧化镁,因此通过限制镁硅合金中的金属硅质量百分比为31.5%~36.5%,防止了在制备合金粉体制备、混料过程中生成氧化物,从而降低活性,且通过限制合金粉体粒径及表面氧含量,进一步提升效果。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁杂质相。4)、通过在氮气气氛下烧结,多余的镁硅烧结助剂会与氮气反应形成氮化硅、镁硅氮等物质非氧化物质,从而降低晶界处的氧化物杂质含量,从而提升氮化硅陶瓷的导热性能。附图说明图1为该低温烧结高导热氮化硅陶瓷的制备方法工艺流程图。具体实施方式下面对本发明作进一步详细描述,其中所用到原料和设备均为市售,没有特别要求。可以理解的是,此处所描述的具体实施例仅用于解释相关发明,而非对该发明的限定。本发明提供一种低温烧结高导热氮化硅陶瓷粉体及其陶瓷、制备方法及其应用,该陶瓷原料粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%<氮化硅<100%,镁硅合金组合物的质量百分比为0%<镁硅合金组合物<15%,镁硅合金组合物在此比例,既能保证形成足够的液相促进烧结,也能保证不至于过多的镁硅合金组合物导致晶界处杂质过多,造成陶瓷性能彻底变差。在本发明中氮化硅为市售的氮化硅粉体,一般来说粉体越小越好,粉体粒径大于1.0um会导致因为粉体粒径过大,导致烧结活性不足,而过小又会导致氮化硅粉体表面氧化硅过多,烧结后氧杂质过多,且粉体过细,特别是纳米粉体也难以烧结致密。在本实施例中,氮化硅陶瓷粉体中的氮化硅的d50为0.3μm~1.0μm。在本实例中优选的氮化硅粉体的α相的比例在95%~99%之间,α相的比例<95%,导致氮化硅粉体β相过高,烧结活性降低,难以烧结致密,力学、导热等性能均变差,而α相的比例>99%,作为异质晶核β相不足,导致β相晶粒尺寸难以长大,从而最终陶瓷导热性能不佳。在本发明中镁硅合金组合物通过现有的合金研磨法、气流粉碎法或者惰性气体离心喷雾法等现有技术制备,并无特别限制。但是在本实例中上述制备方法需要准确的称量,保证镁硅合金组合物中金属硅质量百分比为31.5%~36.5%,更进一步的为34.3%≤镁硅合金组合物≤36.5%,从而通过硅调整合金活性,保证合金不会在后续的混料、成型阶段过早的氧化,造成不能低温形成液相导致烧结活性不足且晶界氧化物杂质过多,影响导热性能。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁。另外在本实例中,镁硅合金组合物的d50为1.0μm~5μm,d50<1μm会导致镁硅合金组合物粉体活性过高,粉体提前氧化,从而达不到作为低温烧结助剂的效果,而d50>5μm会导致金属镁硅烧结助剂的聚集,在晶界处形成大晶粒的氧化镁杂质相,从而降低导热率等性能。而在本实例中镁硅合金组合物氧含量低于0.1%,从而进一步减少氧的参与,不仅提升烧结活性,而且提升烧结后的陶瓷导热等性能。因此在本实例中优选的镁硅合金组合物粉体的制备方法为惰性气体离心喷雾法,然后按照d50需求再次在水或者水与其它溶剂混合的液体球磨达到所需粒径尺寸。本发明提供的低温烧结高导热氮化硅陶瓷,是由上述的低温烧结高导热氮化硅陶瓷粉体制备得到。本发明还提供了该低温烧结高导热氮化硅陶瓷的制备方法,包括以下步骤:a)将质量百分比为85%<氮化硅<100%的氮化硅陶瓷粉体与质量百分比为0%<镁硅合金组合物<15%的镁硅合金组合物混合;现有技术中的干法混合、湿法混合均能实现本发明,在本实施例中为了提升粉体的混合均匀性及混合过程的产生热量而镁硅合金组合物粉体氧化,优选的使用湿法球磨混合,球磨时间2h~24h。在本制备方法中镁硅合金组合物通过现有的合金研磨法、气流粉碎法或者惰性气体离心喷雾法等现有技术制备,并无特别限制。但是在本实例中上述制备方法需要准确的称量,保证镁硅合金组合物中金属硅质量百分比31.5%~36.5%,更进一步的为34.3%≤镁硅合金组合物≤36.5%,优化调整硅合金活性,保证合金不会在后续的混料、成型阶段过早的氧化,造成不能低温形成液相导致烧结活性不足且晶界氧化物杂质过多,影响导热性能。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁。另外在本实例中,镁硅合金组合物的d50为1.0μm~5μm,d50<1μm会导致镁硅合金组合物粉体活性过高,粉体提前氧化,从而达不到作为低温烧结助剂的效果,而d50>5μm会导致金属镁硅烧结助剂的聚集,在晶界处形成大晶粒的氧化镁杂质相,从而降低导热率等性能。而在本实例中镁硅合金组合物氧含量低于0.1%,从而进一步减少氧的参与,不仅提升烧结活性,而且提升烧结后的陶瓷导热等性能。因此在本实例中优选的镁硅合金组合物粉体的制备方法为惰性气体离心喷雾,离心喷雾后根据粒径需求,再次在水或者水与其它溶剂混合的液体球磨达到所需粒径尺寸。b)将步骤a)混合粉体成型得到毛坯;现有技术中的模压法、注塑法、流延法、注浆法和凝胶注模成型等方法均可以用于该陶瓷的成型,可以根据所需成型的形状复杂程度和成本等因素综合考虑,并无特别限制。在本实例中步骤b)中为了量产效率以及成型结构方面的因素,优选的成型工艺为先与有机物粘结剂制备得到喂料,然后注塑成型,其中注塑成型的高分子混合粘结剂为以聚甲醛为主的混合粘结剂,包括聚甲醛、聚丙烯和高密度聚乙烯。其中聚甲醛为粘结剂,聚丙烯和高密度聚乙烯为骨架剂。密炼使用密炼机密炼,密炼温度为170℃~190℃,密炼时间为1h~4h。得到的喂料注塑成型并脱脂得到毛坯;根据选用的高分子混合粘结剂不同,选用不同的脱脂工艺,石蜡基混合粘结剂和聚乙烯基混合粘结剂使用热脱脂工艺,缓慢将有机物高分子分解为有机小分子化合物从注塑件中挥发完成脱脂。而聚甲醛基混合粘结剂选用硝酸催化将聚甲醛分解为甲醛小分子化合物从而完成脱脂。在本实施中优选的注塑温度为175℃~195℃,脱脂为催化脱脂,催化脱脂温度为110℃~135℃,硝酸蒸汽速率为0.16ml/min~0.25ml/min。c)将步骤b)得到的毛坯在氮气气氛下或者含氮气氛烧结。在烧结过程中,利用镁硅合金低熔点特性,在较低的烧结温度下融化成液相,通过液相溶解传质作用,从而在较低的烧结温度下实现烧结。另外在烧结过程单质镁通过氧化还原反应与氮化硅表面的氧化硅氧化层反应,夺去氧原子,从而露出新鲜的氮化硅表面参与烧结,提升陶瓷烧结活性。另外为了证足够的氮气渗透压力促进烧结,且防止镁硅合金过早氧化失去低温烧结意义,炉内氮气压力不能低,但氮气压力过高不仅增加成本而且导致安全隐患,在本实施例中炉内氮气气氛压力为0.5mpa~10mpa,烧结温度为1380℃~1520℃,保温时间1h~4h。以下是本发明的实施例:对比例1称取中值粒径d50约为0.3um的α含量95的氮化硅2500g待用。称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa在135mm×95mm手机模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度52.3%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为56mpa,热导率为3.3w/m.k。对比例2称取中值粒径d50约为0.3um的α含量95的氮化硅2488g和12.5g的d50为1um的氧化镁,然后将氮化硅粉体和氧化镁粉体加入搅拌球磨机中,加入800g去离子水后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa,在135mm×95mm手机模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度53.1%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为51mpa,热导率为4.1w/m.k。实施例1称取342.5g纯度大于99.5%镁条和纯度99.9%的硅粉157.5g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为31.5%的镁硅组合粉体,称取其中100g,加入球磨罐中,水与乙醇按1:1的比例加入50g,然后加入锆球球磨12~14h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为4.89um,采用氧分析仪测试粉体表面氧含量为0.62%。称取中值粒径d50约为0.3um的α含量95的氮化硅2488g和12.5g的d50为4.89um的镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入600g去离子水和200g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa,在注塑135mm×95mm模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度96.6%,使用xrd测试氮化硅α相为48.1%,β相为52.9%,三点弯曲法测试抗弯强度为722mpa,热导率为52.8w/m.k。对比例3将实施例1经过脱脂的样品放入烧结炉内,空气气氛烧结,具体烧结工艺为:以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度53.0%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为52mpa,热导率为4.1w/m.k。由此可见,在空气下烧结,镁硅组合粉体提前氧化,不能实现低温烧结的目的。实施例2称取实施例1中制备的镁硅组合粉体300g,加入球磨罐中,水与乙醇按1:1的比例加入150g,然后加入锆球球磨20~22h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.81um,采用氧分析仪测试粉体表面氧含量为1.45%。称取中值粒径d50约为1um的α含量99的氮化硅1280g和220g的d50为2.81um的镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入550g去离子水和200g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取100g聚甲醛,10g聚丙烯和10g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在170℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为175℃,注塑压力为130mpa,在1.5寸手表模具模腔注塑保压2s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力0.5mpa,以2℃/min升温速率从室温升至1380℃,保温时间1h,得到该氮化硅陶瓷手表外壳。排水法测试该氮化硅陶瓷相对密度95.2%,使用xrd测试氮化硅α相为17.2%,β相为82.8%,三点弯曲法测试抗弯强度为695mpa,热导率为123.2w/m.k。实施例3称取190.5g纯度大于99.5%镁条和纯度99.9%的硅粉109.5g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为36.5%的镁硅组合粉体,称取其中100g,加入球磨罐中,水与乙醇按1:1的比例加入50g,然后加入锆球球磨52~56h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为1.02um,采用氧分析仪测试粉体表面氧含量为2.19%。称取中值粒径d50约为0.5um的α含量98的氮化硅1425g和75g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在190℃密炼2h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为195℃,注塑压力为105mpa,在注塑135mm×95mm模具模腔注塑保压1s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力3mpa,以1.5℃/min升温速率从室温升至1480℃,保温时间2h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度98.8%,使用xrd测试氮化硅α相为5.5%,β相为94.5%,三点弯曲法测试抗弯强度为825mpa,热导率为151.1w/m.k。实施例4称取197.1g纯度大于99.5%镁条和纯度99.9%的硅粉102.9g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为34.3%的镁硅组合粉体,称取其中200g,加入球磨罐中,水与乙醇按1:1的比例加入100g,然后加入锆球球磨30~32h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.22um,采用氧分析仪测试粉体表面氧含量为1.81%。称取中值粒径d50约为0.5um的α含量98的氮化硅1365g和135g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在175℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为125mpa,在155mm×105mm手机模具模腔注塑保压0.5s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力5mpa,以1.5℃/min升温速率从室温升至1420℃,保温时间4h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度99.1%,使用xrd测试氮化硅α相为3.1%,β相为96.9%,三点弯曲法测试抗弯强度为879mpa,热导率为159.1w/m.k。实施例5称取193.8g纯度大于99.5%镁条和纯度99.9%的硅粉106.2g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为35.4%的镁硅组合粉体,称取其中200g,加入球磨罐中,水与乙醇按1:1的比例加入100g,然后加入锆球球磨30~32h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.39um,采用氧分析仪测试粉体表面氧含量为1.87%。称取中值粒径d50约为0.5um的α含量98的氮化硅1395g和105g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在175℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为125mpa,在135mm×95mm模具模腔注塑保压0.5s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力5mpa,以1.5℃/min升温速率从室温升至1400℃,保温时间2h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度99.6%,使用xrd测试氮化硅α相为1.2%,β相为98.8%,三点弯曲法测试抗弯强度为923mpa,热导率为165.5w/m.k。由此对比实施例1~3与实施例1比较可知,不添加烧结助剂、添加氧化镁烧结助剂以及在空气气氛烧结,在低于1520℃范围下均未实现氮化硅陶瓷烧结致密。实施例1中添加本发明的镁硅组合粉体0.5%,使得陶瓷致密度提升到96.6%,相应热导率也提升到52.8w/m.k。实施例1~5比较可知,添加镁硅组合粉体能够显著降低烧结问题并提升陶瓷导热性能,例如实施例2结果表明,添加14.7%的d50为2.81um硅组合粉体,即使在1380℃低温下,也能达到95.2%的致密度,由于大量液相传热作用,β相提升到82.8%,相应的热导率达到了123.2w/m.k。实施例4~5表明,镁硅组合粉体中硅含量在34.3%~35.4%,添加量在7%~9%之间时,能够得到的更为优异的力学合热学性能。以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。完整全部详细技术资料下载当前第1页1 2 该技术已申请专利。仅供学习研究,如用于商业用途,请联系技术所有人。技术研发人员:周涛;雒文博;温兵;赵立宏技术所有人:深圳市精而美精密陶瓷科技有限公司;周涛我是此专利的发明人上一篇:基于自然语音处理的正则意图识别方法与流程上一篇:敏感数据检测和替换的制作方法

7,四川农业银行打钱到东莞农商

到银行柜台办理,收费1%,最高50元。但新规是全部减半的。你汇款时注意问一下。

8,密炼机 开炼机 造粒机听说东莞利拿的还不错 说是台湾机器 有人用过吗

不错,台湾的密炼机,就算是二手的也比国产的要贵上一倍,甚至几倍,我朋友工厂里面就有一台,很好用,我QQ2585657765,交个朋友吧!

9,立信杰东莞精密模具制造有限公司凤岗镇竹塘村玉泉工业区东深

龙华可以坐车(长10路或68路)到凤岗天桥,再坐凤岗的3路车到玉泉工业区(可以在立信杰后面门的站台下),当然,敢于闯,那就直接过天桥穿过市场,沿着新修的公路直接走到东深二路,看见很多厂房了,就是玉泉工业区,最边上就是兆隆五金厂(下车后朝金凯悦酒店对面方向直走8分钟左右,即到),我就在这附近,请别怀疑我的正确性,呵呵

10,各位朋友给点答案拉哪里的密炼机比较好呀

不知道这位朋友有没有听过利拿密炼机,利拿机械实业(东莞)有限公司坐落于制造业闻名世界的广东东莞,本公司是一家致力于研发、生产、销售、维护为一体的橡塑机械设备企业,公司以专业设计 、规划、制造橡胶/塑胶/化工的整厂机械设备为龙头,可为客户全方位的量身定做整厂设备的配套服务。(东莞利拿机械值得信赖)若是有意,请联系戴先生僧13509813391

文章TAG:东莞  陶瓷  注射  密炼机  东莞陶瓷注射密炼机  
下一篇