1,cad中 怎么画一条线跟另一条线平行

简单的办法就是偏移(快捷键o),如果长度不合适,再加长;还可以用多义线,直接画平行的两条线;另外,一些二次开发的软件(我用的是清华天河cad)直接有画平行线和垂直线的
偏移命令:OFFSET快捷键:O输入命令后键入偏移的尺寸就可以了~!还是需要自己多熟悉一下~!
在命令栏输入:O,回车,输入两条平行线的距离(偏移距离),回车,选择线条,在偏移的方向点击一下。OK,回答完毕。
你可以在cad里这样得到平行线:1,可以用 CO 命令直接复制一条。2,用 O 命令把它偏移一条。3,用 XL 命令里的 A 参数做一条。
打开下方约束里面的平行约束

cad中 怎么画一条线跟另一条线平行

2,怎样由线线平行推论到线面平行

如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。1、线面平行如何推出线线平行:如果一条直线和一个平面内平行,那么经过这条直线的平面和这个平面相交,那么这条直线和交线平行。2、线面平行如何推出面面平行:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。3、面面平行如何推出线面平行:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。扩展资料:在同一平面内永不相交的两条直线,判定平行线的方法包括同位角相等,两直线平行,内错角相等,两直线平行3.同旁内角互补,两直线平行。在同一平面内,过直线外一点,有且只有一条直线与这条直线互相平行。平行公理的推论:(平行线的传递性) 如果两条直线都和第三条直线平行,那么这两条直线也互相平行。平行于同一条直线的两条直线互相平行。同一平面内,垂直于同一条直线的两条线段(直线)平行。(同一平面内),平行于同一条直线的两条线段(直线)平行。此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。参考资料来源:百度百科——平行线的判定
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。已知:a∥b,a?α,b?α,求证:a∥α反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α∵a∥b,∴A不在b上在α内过A作c∥b,则a∩c=A又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。∴假设不成立,a∥α向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵b?α∴b⊥p,即p·b=0∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb那么p·a=p·kb=kp·b=0即a⊥p∴a∥α扩展资料1、公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内2、公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.它可以判断点在直线上,即证若干个点共线的重要依据.3、公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据4、公理4:平行于同一条直线的两条直线互相平行参考资料来源:百度百科-平行线的判定
如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。1、线面平行如何推出线线平行:如果一条直线和一个平面内平行,那么经过这条直线的平面和这个平面相交,那么这条直线和交线平行。2、线面平行如何推出面面平行:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。3、面面平行如何推出线面平行:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。扩展资料:线面平行性质1、一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。2、一条直线与一个平面平行,则该直线垂直于此平面的垂线。线线平行判定方法1、在同一平面内,两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。2、在同一平面内,两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。3、在同一平面内,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。4、如果两条直线都和第三条直线平行,那么这两条直线也互相平行。平行于同一条直线的两条直线互相平行。参考资料来源:百度百科-平行线的判定
线线平行如何推出线面平行 :  如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。  1、线面平行如何推出线线平行  如果一条直线和一个平面内平行,那么经过这条直线的平面和这个平面相交,那么这条直线和交线平行。  2、线面平行如何推出面面平行  如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。  3、面面平行如何推出线面平行  如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。  4、线线平行如何推出面面平行  如果一个平面内有两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行。  5、面面平行如何推出线线平行  如果两个平行平面内同时和第三个平面相交,则交线平行。

怎样由线线平行推论到线面平行

3,求线线平行面面平行的定理

基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3: 过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面: 平行、 相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为 [0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ③直线和平面平行——没有公共点 直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。 直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 两个平面的位置关系: (1)两个平面互相平行的定义:空间两平面没有公共点 (2)两个平面的位置关系: 两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。 a、平行 两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。 b、相交 二面角 (1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。 (2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0 °,180°] (3) 二面角的棱:这一条直线叫做二面角的棱。 (4) 二面角的面:这两个半平面叫做二面角的面。 (5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。 (6) 直二面角:平面角是直角的二面角叫做直二面角。 esp. 两平面垂直 两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥ 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。 Attention: 二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系) 多面体 棱柱 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。 棱柱的性质 (1)侧棱都相等,侧面是平行四边形 (2)两个底面与平行于底面的截面是全等的多边形 (3)过不相邻的两条侧棱的截面(对角面)是平行四边形 棱锥 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 棱锥的性质: (1) 侧棱交于一点。侧面都是三角形 (2) 平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方 正棱锥 正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的性质: (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。 (3) 多个特殊的直角三角形 esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。 b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。 Attention: 1、 注意建立空间直角坐标系 2、 空间向量也可在无坐标系的情况下应用 多面体欧拉公式:V(角)+F(面)-E(棱)=2 正多面体只有五种:正四、六、八、十二、二十面体。 球 attention: 1、 球与球面积的区别 2、 经度(面面角)与纬度(线面角) 3、 球的表面积及体积公式 4、 球内两平行平面间距离的多解性

求线线平行面面平行的定理


文章TAG:线线  平行  怎么  一条  线线平行  怎么画一条线跟另一条线平行  
下一篇