本文目录一览

1,一次函数的基础知识归纳

定义 形如y=kx+b,(k≠0,k,b是常数)的解析式表示的函数叫一次函数。也叫线性函数。图像一次函数y=kx+b的图像是一条直线,过点(0,b)和(-b/k,0).性质1.定义域是R,值域也是R。2.一次函数y=kx+b恒有零点x=-b/k.3.当k>0,在R上是增函数。当k<0,在R上是减函数
因为函数的图象是经过原点的直线所以是正比例函数,所以设y=kx(k不等于0)因为它过点(2,-3a)与点(a,-6), -3a=2k a=-2k/3 (1) -6=ak (2) (1)代入(2) -6=-2k^2/3 k^2=9 因为直线过第四象限 所以k<0,所以k=-3 y=-3x

一次函数的基础知识归纳

2,一次函数的知识

.正比例函数与一次函数的关系:正比例函数是当y=kx+b中b=0时特殊的一次函数。 2.待定系数法确定正比例函数、一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式。 3.一次函数的图像:正比例函数y=kx(k≠0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k≠0)是过(0,b),( ,0)两点的一条直线。 4.直线y=kx+b(k≠0)的位置与k、b符号的关系:当k>0是直线y=kx+b过第一、三象限,当k<0时直线过第二、四象限;b 决定直线与y轴交点的位置,b>0直线交y轴于正半轴,b<0直线交y轴于负半轴
表达式y=kx+b,(k不等于0)。 其中k为斜率,|k|的值越大,一次函数图像越陡,b决定函数图像与纵轴的交点,一次函数图像与纵轴交点坐标为(0,b),与横轴交点坐标为(-k/b,0),一次函数的图像永远是一条不与横轴纵轴平行的直线。给你举个例子:y=2x-1
y=kx+b(k不等于0)是一次函数,也就是x的次数是一次的,其中k是斜率,k>0时函数图象递增,k越大,图象越陡,k<0时函数图象递减,k越大,图象越陡.b是图象与y轴的交点的纵坐标,b>0,交点在正半轴,b<0,交点在负半轴
陡 缓

一次函数的知识

3,一次函数的知识点

主要是函数的增减性和过哪个象限的问题y=kx+b 恒过点(0,b) k是斜率,b是截距首先讨论k,当k=0时,y=b,则函数图象是和x轴平行的一条直线,过(0,b)点1.k大于0时,为增函数,过一三象限2.k小于0时,为减函数,过二四象限
y=kx+b(k不等于0),然后你可以随便画一条函数图象,谁也不可能说那么全面,只有你自己去发现,其实一次函数还是比较好学的,只要上课认真听讲就OK了.
函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k.k为常数. 即:y=kx+b(k,b为常数,k≠0), ∵当x增加m,k(x+m)+b=y+km,km/m=k。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k不等于0)则称y是x的一次函数 y=kx+b时: 当 k>0,b>0, 这时此函数的图象经过第一、二、三象限; 当 k>0,b<0, 这时此函数的图象经过第一、三、四象限; 当 k<0,b>0, 这时此函数的图象经过第一、二、四象限; 当 k<0,b<0, 这时此函数的图象经过第二、三、四象限; 当b>0时,直线必通过第一、二象限; 当b<0时,直线必通过第三、四象限。

一次函数的知识点

4,求一次函数的全部知识点

一. 变量与常量 1)在某一个变化过程中,取同一数值的量叫做常量。在某一个变化过程中,取不同的数值的量叫做变量。 2)在某一个变化过程中,有两个变量:x和y,当x取每一个值时,y对应地取唯一的一个值,此时,y叫做x的函数,也叫做“应变量”,x叫做“自变量”。 (函数在等式左面,右面式子中含有自变量。) 3)函数关系式 用来表示函数关系的式子就叫做“函数关系式”,也叫做函数的解析式。 特点:1.是等式。 2.左侧是函数(因变量),右侧是自变量的代数式。 4)函数自变量的取值范围 1.式子需有意义。 2.表示实际问题实有实际意义。 3.函数值即自变量对应函数的值。 5)同一个函数: 自变量和因变量的取值范围分别完全相同的两个函数叫做“同一个函数”。 二.函数的图像 1)绘图步骤: 1.列表 2.描点 3.连线 4.注明关系式 2)如果一个点在某个函数的图像上,那么这一点的横、纵坐标一定满足这个函数的解析式,反之则不在。 三.正比例函数 1)一般地,形如:y=kx(k为常数且k≠0)叫做“正比例函数”,其中k叫做比例系数。 2)为什么k≠0? 因为如果k=0,则不论x为何值,y都不变,是常量。不符合“函数有两个变量”。所以k=0不成立。 3)函数的增减性 当k>0时,图像经过第一、第三象限,随着x的增大,y相应增大。 当k<0时,图像经过第二、第四象限,随着x的增大,y相应减小。 4)正比例函数: 1.定义:b≠0,x的指数为1 2.一般式:y=kx 3.图像形式:过原点的一条直线。 4.性质:增减性。 四、一次函数 1)若两个变量x,y之间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数。其中x叫做自变量,y叫做应变量。X的指数是1. 2)正比例函数是特殊的一次函数(即b=0) 3)一次函数的增减性 当k>0时,y随着x的增大而增大。 当k<0时,y随着x的增大而减小。 4)一次函数与图像 1.当k>0,b>0时,函数图像经过第一、二、三象限。 2.当k>0,b=0时,函数图像经过第一、三象限,及原点 3.当k>0,b<0时,函数图像经过第一、三、四象限。 4.当k<0,b>0时,函数图像经过第一、二、四象限。 5.当k<0,b=0时,函数图像经过第二、四象限,及原点 6.当k<0,b<0时,函数图像经过第二、三、四象限。 在一次函数图像中:k决定了一次函数的增减性。(直线与两坐标轴的角度) b决定了一次函数的位置。(直线与y轴的交点与x轴的位置关系) 在两个一次函数中:k相同但b不同的两个(几个)函数图像平行。 b相同但k不同的两个(几个)函数图像平行。 k、b都相同,两条函数图像重合。 5)图像画法 1.两点画法:(0,b);(﹣b/k,0) 2.平移法:先画y=kx,在移动b。 6)关于x轴对称的两条函数图像k与b的值互为相反数。 关于y轴对称的两条函数图像k的值互为相反数。

5,一次函数重点知识

重点:⑴根据现实世界中确定物体位置的现象感受,明确确定物体位置的多种方式方法; ⑵用坐标表示图形 变换的位置; ⑶理解函数的概念及自变量范围的确定; ⑷正比例函数、一次函数的概念、解析式求取、图象及性质; ⑸坐标及函数知识的实际应用。 难点:⑴理解在平面内确定物体的位置需要两个数据,并能根据题意确定物体的位置; ⑵用坐标表示地理位置; ⑶同一函数的判定; ⑷理解和应用正比例函数、一次函数的性质; ⑸运用坐标知识、函数知识解决实际问题。 考点:⑴确定点的坐标; ⑵图形变换坐标变化特点的应用; ⑶函数判断及函数自变量范围; ⑷函数图象的认识; ⑸正比例函数和一次函数的图象、解析式的确定、性质的应用;⑹坐标及函数知识的实际应用
定义:如果y=kx+b(k、b是常数且k不等于0),那么y叫做x的一次函数。二、一次函数的两个特征:(1)自变量x的指数为1 ;(2)k不等于0 ;(更特别的是:当b=0时,一次函数y=kx+b变为y=kx 这里k是常数且k不等于0 ,这是y叫做x的正比例函数)三、一次函数的图像和性质: 1、正比例函数y =kx(k不等于0)的图像是经过原点(0,0)的一条直线;一次函数y=kx+b的图像是一条过(0,b)和(-b/k,0)点的直线。 2、k、b的取值范围对函数图像的影响:A:当k>0时有三种情况即:(1)当k>0时 b>0时,图像经过一、二、三象限;(2)当k>0时 b=0时,图像经过原点,即一、三象限;(3)当k>0时 b<0图像一、四、三象限;B:当k<0时也有三种情况即:(1)当k<0时,b>0时,图像经过二、一、四象限;(2)当k<0时,b=0时,图像经过原点,即二、四象限;(3)当k<0时,b<0时,图像经过二、三、四象限 四、函数的增减性:当k>0时,y随x的增大而增大; 当k<o时,y随x的增大而减小。(在复习是一定要充分关注 k ,b两个系数,只要真正把我了他们对函数图像的作用,才能够更好的掌握一次函数)反比例函数:一、定义:如果y=k/x(k是常数且k不等于0)那么y是x的反比例函数。二、x是自变量,由于x是分母,所以x的取值范围是不等于0的实数。要注意两个特性:(1)k不等于0 ;(2)y=k/x的变形式;三、反比例的图像和性质:(1)放比例函数的图像是双曲线,其两个分支可以无限接近坐标轴,但是永远不会与两轴相交;(2)当k>o时,双曲线的两个分支分别在第一、三象限内;当k<0时,双曲线的两个分支分别在第二、四象限内;(3)当k>0是,在每个象限内,y随x的增大而减小;当k<0是,在每个象限内,y随x的增大而增大。

6,求一次函数的知识点

“函数”的概念是17世纪时从对各种运动问题的研究和对机械运动规律的考察中形成的。“函数”这个词用作数学术语最早是德国数学家莱布尼茨于1692年在考虑由次切线的变化来确定曲线时引入而采用的,表示函数的记号f(x)是瑞士数学家欧拉于1734年引进的。 在我国,“函数”一词最早出现在1859年清末数学家李善兰和英国人伟烈·亚力合译的《代数微积拾级》一书中,并给出定义:“凡此变数中函数中函彼变数”,意思是如在一个式子中包含着变数x,那么这个式子就是x的函数,并举例y=Ax+B。 从“函数”概念的形成和其他知识的发展,可看出“函数”在人类社会进展和推动生产力、科学的发展中起着重要作用,是一个重要的知识点。 一.本章学习要求 1. 理解一次函数的概念,会判断两个变量之间的关系是否为一次函数,能根据已知条件,确定一次函数的解析式; 2. 会根据一次函数的解析式或给出的条件画一次函数的图像;并借助图像能直观地认识和掌握一次函数的性质,进一步理解一次函数的概念; 3. 了解两条平行直线的代数表示式,且会从表达式中的有关字母确定、判断两直线的位置关系,能以运动的观点认识两条平行直线之间的上下平移关系,通过对直线的深入研究,感悟数形结合的作用,更深刻理解一次函数的概念;通过一次函数概念、图像与性质的学习,进一步认识一元一次方程、一元一次方程、一元一次不等式之间的关系;通过对实际问题的讨论,理解一次函数知识的实际应用,能通过建立简单函数模型解决实际问题,学会运用函数死刑解决实际问题;在利用函数的图像解决问题的过程中,学会“收集信息、整理信息、应用信息”的能力。 二.方法指导 一)待定系数法是求一次函数解析式的重要方法 求函数解析式通常都是用待定系数法,确定一次函数解析式y=kx+b需要两个独立的条件,以确定k、b的值,但须注意k≠0这一要求。 二) 运动数形结合的方法研究一次函数的图像和性质 数形结合是数学中的重要思想方法。函数解析式及函数图像就是数与形的结合,通过观察函数图像可以掌握函数的数量关系与变化情况。 1. 一次函数y=kx+b(k≠0)的图像是一条平行于直线y=kx且过点(0,b)的直线;或者是一条过点(0,b)和( )的直线。B是直线y=kx+b在y轴上的截距, 是直线在x轴上的截距。 2. 直线y=kx+b截两坐标所得直角三角形的面积和周长可由它在x、y轴上的截距求得,但注意此时要取它们的绝对值|b|和 来计算。特殊地,当截得的是等腰直角三角形时,此时|k|=1 3. 当k>0时,直线y=kx+b从左到右的走向是向上延伸,反映在函数值上就是y值随x的增大而增大;当k<0时,则反之,即直线从左到右的走向是向下延伸,y值随x的增大而减少。因此k>0,直线必通过一、三象限,若b>0,直线通过一二三象限;若b<0,直线通过一三四象限,相当于直线在向上或向下移动。当k<0时同样考虑。 4. 函数图像上的点的坐标,必适合该函数解析式,因此,直线y=kx+b上的点横坐标对应于解析式中自变量x,点的纵坐标对应于y。∴函数值y>0时,自变量x的取值范围就是在x轴上方的点的横坐标的取值范围。我们只需求出直线与x轴交点的横坐标,根据图像易于求出y>0,或y<0时x的取值范围。 特殊地,如果是在直线y=kx+b上的线段,那么在此函数定义域范围内,函数值必有一个最大值,也有一个最小值,且就是线段的两端的纵坐标 5. 当线段AB在x轴上,则它的长度就是它的两个端点的横坐标的差的绝对值 ;若线段CD在y轴上,则它的长度|yc-yd|.在象限内的点P到x轴的距离是点P纵坐标的绝对值 。这在计算平面直角坐标系中三角形的面积时十分有用。
很容易的啊! 记住 y=kx+b (K≠0) 如果b=0 那么就是正比例函数 一次函数也是特殊的正比例函数(只要了解下就够了) 一次函数的图像:当k>0时 且b>0 那么一次函数经过一二三象限 当k>0时且b<0经过一三四象限 当k<0且b>0 经过一二四象限 如果k<0且b<0 那么经过二三四象限

7,一次函数有哪些知识点

去百度文库,查看完整内容>内容来自用户:你说的对知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点,不属于任何象限。坐标原点既属于x轴,也属于y轴。2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。坐标平面内的点与有序实数对存在一一对应关系。知识点二、不同位置的点的坐标的特征1、各象限内点点P(x,y)在第二象限点P(x,y)在第一象限点P(x,y)在第三象限点P(x,y)在第四象限2、坐标轴上的点点P(x,y)在x轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上的点74
1、正比例函数  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.2、正比例函数图象和性质  一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.3、正比例函数解析式的确定  确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是:  (1)设出含有待定系数的函数解析式y=kx(k≠0);  (2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程;  (3)解方程,求出待定系数k;  (4)将求得的待定系数的值代回解析式.4、一次函数  一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.5、一次函数的图象  (1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b.  (2)一次函数y=kx+b的图象的画法.  根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.6、正比例函数与一次函数图象之间的关系  一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).7、直线y=kx+b的图象和性质与k、b的关系如下表所示: k>0,b>0经过第一、二、三象限k>0,b<0经过第一、三、四象限k>0,b=0经过第一、三象限k>0时,图象从左到右上升,y随x的增大而增大k<0b>0经过第一、二、四象限k<0,b<0经过第二、三、四象限K,0,b=0经过第二、四象限k<0图象从左到右下降,y随x的增大而减小8、直线y1=kx+b与y2=kx图象的位置关系:  (1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象.  (2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.9、直线l1:y1=k1x+b1与l2:y2=k2x+b2的位置关系可由其解析式中的比例系数和常数来确定:  当k1≠k2时,l1与l2相交,交点是(0,b).10、直线y=kx+b(k≠0)与坐标轴的交点.  (1)直线y=kx与x轴、y轴的交点都是(0,0);  (2)直线y=kx+b与x轴交点坐标为(,0)与y轴交点坐标为(0,b).
1、正比例函数  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.2、正比例函数图象和性质  一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.3、正比例函数解析式的确定  确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是:  (1)设出含有待定系数的函数解析式y=kx(k≠0);  (2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程;  (3)解方程,求出待定系数k;  (4)将求得的待定系数的值代回解析式.4、一次函数  一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.5、一次函数的图象  (1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b.  (2)一次函数y=kx+b的图象的画法.  根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.6、正比例函数与一次函数图象之间的关系  一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).7、直线y=kx+b的图象和性质与k、b的关系如下表所示: k>0,b>0经过第一、二、三象限k>0,b<0经过第一、三、四象限k>0,b=0经过第一、三象限k>0时,图象从左到右上升,y随x的增大而增大k<0b>0经过第一、二、四象限k<0,b<0经过第二、三、四象限K,0,b=0经过第二、四象限k<0图象从左到右下降,y随x的增大而减小8、直线y1=kx+b与y2=kx图象的位置关系:  (1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象.  (2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.9、直线l1:y1=k1x+b1与l2:y2=k2x+b2的位置关系可由其解析式中的比例系数和常数来确定:  当k1≠k2时,l1与l2相交,交点是(0,b).
1.一次函数的意义。2.取值范围。3.一次函数的图象及其性质。4.一次函数的应用。

文章TAG:一次函数知识点一次  一次函数  知识  
下一篇