1,纳米加工日语怎么

●ナノメートル加工(ナノメートルかこう)●ナノ加工(ナノかこう)例:10年后にはナノメートル加工が技术の中心になることが予测される。これまでにない3次元ナノ加工技术を开発しました。
纳米 手环ナノブレスレットnanoburesuretto

纳米加工日语怎么说

2,什么是纳米加工学

纳米级精度的加工和纳米级表层的加工,即原子和分子的去除、搬迁和重组是纳米技术主要内容之一。纳米加工技术担负着支持最新科学技术步的重要使命。国防战略发展的需要和纳米级精度产品高利润市场的吸引,促使了纳米加工技术产生并迅速发展。例如,现代武器惯导仪表的精密陀螺、激光核聚变反射镜、大型天体望远镜反射镜和多面棱镜、大规模集成电路硅片、计算机磁盘及复印机磁鼓等都需要进行纳米级加工。纳米加工技术的发展也促进了机械、电子、半导体、光学、传感器和测量技术以及材料科学的发展。美国在开发纳米加工技术方面,起着先导作用。由于电子技术、计算机技术、航空航天技术和激光技术等尖端技术发展的需要,美国于1962年研制出金刚石刀具超精细切削机床,解决了激光核聚变反射镜及天体望远镜等光学零件和计算机磁盘等精密零件的加工,打下了纳米加工技术的基础,随后,西欧和日本纳米加工技术发展较快。纳米加工技术是一门新兴的综合性加工技术。它集成了现代机械学、光学、电子、计算机、测量及材料等先进技术成就,使得加工的精度从20世纪60年代初的微米级提高到目前的10nm级,在短短几十年内使产品的加工精度提高了1~2个数量级,极大的改善了产品的性能和可靠性。目前,纳米加工技术已成为国家科学技术发展水平的重要标志。随着各种新型功能陶瓷材料的不断研制成功,以及用这些材料作为关键元件的各类装置的高性能化,要求功能陶瓷元件的加工精度达到纳米级甚至更高,这些都有力地促进了纳米加工技术的进步。近年来,纳米技术的出现促使纳米加工向其极限加工精度—原子级加工进行挑战。
物理变化。

什么是纳米加工学

3,纳米加工的含义和物理本质

(1)定义:电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。(2)物理本质:进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。 在放电的微细通道中瞬时集中大量的热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、气化,并爆炸式地飞溅到工作液中,迅速冷凝,形成固体的金属微粒,被工作液带走。这时在工件表面上便留下一个微小的凹坑痕迹,放电短暂停歇,两电极间工作液恢复绝缘状态。紧接着,下一个脉冲电压又在两电极相对接近的另一点处击穿,产生火花放电,重复上述过程。这样,虽然每个脉冲放电蚀除的金属量极少,但因每秒有成千上万次脉冲放电作用,就能蚀除较多的金属,具有一定的生产率。 在保持工具电极与工件之间恒定放电间隙的条件下,一边蚀除工件金属,一边使工具电极不断地向工件进给,最后便加工出与工具电极形状相对应的形状来。因此,只要改变工具电极的形状和工具电极与工件之间的相对运动方式,就能加工出各种复杂的型面。工具电极常用导电性良好、熔点较高、易加工的耐电蚀材料,如铜、石墨、铜钨合金和钼等。在加工过程中,工具电极也有损耗,但小于工件金属的蚀除量,甚至接近于无损耗。工作液作为放电介质,在加工过程中还起着冷却、排屑等作用。常用的工作液是粘度较低、闪点较高、性能稳定的介质,如煤油、去离子水和乳化液等。
纳米材料是指将某些物质的尺寸加工到 ___纳米级(纳米级就是颗粒在1纳米到100纳米之间的微粒)____ 时物理性质和化学性质与较大尺寸时发生了异常变化

纳米加工的含义和物理本质

4,纳米加工与普通加工有什么区别

区别就是更加精密。纳米级加工的实质就是要切断原子间的结合,实现原子或分子的去除。纳米加工分类:包括切削加工、化学腐蚀、能量束加工、复合加工、扫描隧道显微技术加工等多种方法。纳米加工关键技术:检测技术;环境条件控制;机床及工具。欢迎有时间光临百度(机械工程)我是机械工程吧吧主,有什么新的问题和想法可以来机械工程吧共同探讨
纳米级精度的加工和纳米级表层的加工,即原子和分子的去除、搬迁和重组是纳米技术主要内容之一。纳米加工技术担负着支持最新科学技术步的重要使命。国防战略发展的需要和纳米级精度产品高利润市场的吸引,促使了纳米加工技术产生并迅速发展。例如,现代武器惯导仪表的精密陀螺、激光核聚变反射镜、大型天体望远镜反射镜和多面棱镜、大规模集成电路硅片、计算机磁盘及复印机磁鼓等都需要进行纳米级加工。纳米加工技术的发展也促进了机械、电子、半导体、光学、传感器和测量技术以及材料科学的发展。美国在开发纳米加工技术方面,起着先导作用。由于电子技术、计算机技术、航空航天技术和激光技术等尖端技术发展的需要,美国于1962年研制出金刚石刀具超精细切削机床,解决了激光核聚变反射镜及天体望远镜等光学零件和计算机磁盘等精密零件的加工,打下了纳米加工技术的基础,随后,西欧和日本纳米加工技术发展较快。纳米加工技术是一门新兴的综合性加工技术。它集成了现代机械学、光学、电子、计算机、测量及材料等先进技术成就,使得加工的精度从20世纪60年代初的微米级提高到目前的10nm级,在短短几十年内使产品的加工精度提高了1~2个数量级,极大的改善了产品的性能和可靠性。目前,纳米加工技术已成为国家科学技术发展水平的重要标志。随着各种新型功能陶瓷材料的不断研制成功,以及用这些材料作为关键元件的各类装置的高性能化,要求功能陶瓷元件的加工精度达到纳米级甚至更高,这些都有力地促进了纳米加工技术的进步。近年来,纳米技术的出现促使纳米加工向其极限加工精度—原子级加工进行挑战。

文章TAG:纳米  加工  日语  怎么  纳米加工  
下一篇