1,阿基米德杠杆原理是怎样发现的

阿基米德定律(Archimedes law)是物理学中力学的一条基本原理。浸在液体(或气体)里的物体受到向上的浮力作用,浮力的大小等于被该物体排开的液体的重力(“Any object placed in a fluid displacesits weight;an immersed object displaces its volume.”)。其公式可记为F浮=G排=ρ液·g·V排液。

阿基米德杠杆原理是怎样发现的

2,阿基米德自己是怎样证明杠杆原理的

我觉得可以这样理解: 我们知道任何机械都不省功,因此杠杆是不可能省功的。 据功能关系,做了多少功,就有多少能量的转化。 譬如我们用杠杆把石头翘起,这与用手抬起石头没有什么两样。 假设在理想状况下,使用杠杆不做额外功。 为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。 这也符合W=FS与能量守恒。

阿基米德自己是怎样证明杠杆原理的

3,阿基米德的杠杆原理

阿基米德对于机械的研究源自于他在亚历山大城求学时期。有一天阿基米德在久旱的尼罗河边散步,看到农民提   水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水 杠杆原理吸上来的工具,后世的人叫它做“阿基米德螺旋提水器”,埃及一直到二千年后的现在,还有人使用这种器械。这个工具成了后来螺旋推进器的先祖。当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理”和“力矩”的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的。他自己曾说:“给我一个支点,我能撬动整个地球。”   刚好海维隆王又遇到了一个棘手的问题:国王替埃及托勒密王造了一艘船,因为太大太重,船无法放进海里,国王就对阿基米德说,“你连地球都举得起来,一艘船放进海里应该没问题吧?”于是阿基米德立刻巧妙地组合各种机械,造出一架机具,在一切准备妥当后,将牵引机具的绳子交给国王,国王轻轻一拉,大船果然移动下水,国王不得不为阿基米德的天才所折服。从这个历史记载的故事里我们可以明显的知道,阿基米德极可能是当时全世界对于机械的原理与运用,了解最透彻的人

阿基米德的杠杆原理

4,阿基米德杠杆原理表达式

当杠杆处于静止状态或匀速转动状态时,杠杆就处于平衡状态。杠杆的平衡条件: 动力×动力臂=阻力×阻力臂用字母表示就是:F1×L1=F2×L2杠杆的平衡条件又叫杠杆原理,是阿基米德最早提出的。据此他发出了给我一个支点,我可以撬动地球。的豪言壮语、
当杠杆处于静止状态或匀速转动状态时,杠杆就处于平衡状态。杠杆的平衡条件: 动力×动力臂=阻力×阻力臂用字母表示就是:F1×L1=F2×L2杠杆的平衡条件又叫杠杆原理,是阿基米德最早提出的。据此他发出了给我一个支点,我可以撬动地球。的豪言壮语
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为f1· l1=f2·l2。式中,f1表示动力,l1表示动力臂,f2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
当杠杆处于静止状态或匀速转动状态时,杠杆就处于平衡状态。杠杆的平衡条件: 动力×动力臂=阻力×阻力臂用字母表示就是:F1×L1=F2×L2杠杆的平衡条件又叫杠杆原理,是阿基米德最早提出的。据此他发出了给我一个支点,我可以撬动地球。的豪言壮语、

文章TAG:阿基米德杠杆原理阿基米德  米德  杠杆  
下一篇