1,三角形外心所具有的性质

外心是外接圆的圆心 到每个顶点的距离等于定长..简明吧

三角形外心所具有的性质

2,三角形的外心有什么性质

外心是三角形外接圆的圆心。外心到三角形三个顶点的距离相等。
三角形的内心是三个角平分线的交点,它到三角形三边的距离相等。它是三角形内切圆的圆心。 三角形的外心是三条边的垂直平分线的交点,它到三角形的三个角的距离相等,它是三角形外接圆的圆心。

三角形的外心有什么性质

3,三角形外心的性质

答:三角形外心就是外接圆的圆心,到各顶点距离相等,是各边中垂线的交点。
三角形外接圆的圆心叫做三角形的外心. 三角形外接圆的圆心也就是三角形三边中垂线的交点,三角形的三个顶点就在这个外接圆上。性质1:(1)锐角三角形的外心在三角形内; (2)直角三角形的外心在斜边上,与斜边中点重合; (3)钝角三角形的外心在三角形外. 性质2:三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.外心到三顶点的距离相等。 性质3:点g是平面abc上一点,那么点g是⊿abc外心的充要条件 (向量ga+向量gb)·向量ab= (向量gb+向量gc)·向量bc=(向量gc+向量ga)·向量ca=向量0.更多见参考资料

三角形外心的性质

4,内心外心重心中心是什么有什么性质

三角形中,重心是三边中线的交点,重心到角顶点的距离与到对应边距离的比为2:1。垂心,它是三边高的交点。内心是三个角的角平分线交点,它最大的特点是到三边的三个距离相等,以它为圆心可作一圆内切于三角形。外心是三边垂直平分线交点,它到三个角顶点距离相等,以它为圆心可作一圆过三角形三个顶点。
正三角形的重心、垂心、外心、内心重合的点叫中心 一个物体的各部分都要受到重力的作用。从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心。 重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((x1+x2+x3)/3,(y1+y2+y3)/3);空间直角坐标系——横坐标:(x1+x2+x3)/3 纵坐标:(y1+y2+y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点 三角形的三条高的交点叫做三角形的垂心。 锐角三角形垂心在三角形内部。 直角三角形垂心在三角形直角顶点。 钝角三角形垂心在三角形外部。 垂心是高线的交点 垂心是从三角形的各顶点向其对边所作的三条垂线的交点。 三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 内心是三角形三条内角平分线的交点,即内切圆的圆心。 直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。 外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。 三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心叫做旁心。旁心是一个三角形内角平分线与其不相邻的两个外角平分线的交点,它到三边的距离相等。。三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。
内心:三角形内接圆的圆心 即三角形三个内角平分线的交点 。 内心到三角形三边的距离相等。外心:三角形外接圆的圆心 即三角形三条边的垂直平分线的交点。 外心到三角形三个顶点的距离相等。重心 :三角形三条边上的中线的交点,。 重心到顶点的距离是它到对边中点的两倍。

5,三角形重心中心垂心内心外心的性质越详细越好答好了加

一、三角形重心定理二、三角形外心定理三、三角形垂心定理四、三角形内心定理五、三角形旁心定理有关三角形五心的诗歌 三角形五心定理  三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。一、三角形重心定理  三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)   重心的性质:   1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。   2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。   3、重心到三角形3个顶点距离的平方和最小。   4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。二、三角形外心定理  三角形外接圆的圆心,叫做三角形的外心。   外心的性质:   1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。   2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。   3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。   4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。   5、外心到三顶点的距离相等三、三角形垂心定理  三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。   垂心的性质:   1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。   2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))   3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。   4、垂心分每条高线的两部分乘积相等。   定理证明   已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB   证明:   连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE   ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC   ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE   又∵∠ABE+∠BAC=90度 ∴∠ACF+∠BAC=90度 ∴CF⊥AB   因此,垂心定理成立!四、三角形内心定理  三角形内切圆的圆心,叫做三角形的内心。   内心的性质:   1、三角形的三条内角平分线交于一点。该点即为三角形的内心。   2、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。   3、P为ΔABC所在平面上任意一点,点0是ΔABC内心的充要条件是:向量P0=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).   4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC   5、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:   a(向量OA)+b(向量OB)+c(向量OC)=向量0.   6、、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.   7、(内角平分线分三边长度关系)   △ABC中,0为内心,∠A 、∠B、 ∠C的内角平分线分别交BC、AC、AB于Q、P、R, 则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.五、三角形旁心定理  三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。   旁心的性质:   1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。   2、每个三角形都有三个旁心。   3、旁心到三边的距离相等。   如图,点M就是△ABC的一个旁心。三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。   附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。有关三角形五心的诗歌  三角形五心歌(重外垂内旁)   三角形有五颗心,重外垂内和旁心, 五心性质很重要,认真掌握莫记混.   重 心   三条中线定相交,交点位置真奇巧, 交点命名为“重心”,重心性质要明了,   重心分割中线段,数段之比听分晓; 长短之比二比一,灵活运用掌握好.   外 心   三角形有六元素,三个内角有三边. 作三边的中垂线,三线相交共一点.   此点定义为外心,用它可作外接圆. 内心外心莫记混,内切外接是关键.   垂 心   三角形上作三高,三高必于垂心交. 高线分割三角形,出现直角三对整,   直角三角形有十二,构成六对相似形, 四点共圆图中有,细心分析可找清.   内 心   三角对应三顶点,角角都有平分线, 三线相交定共点,叫做“内心”有根源;   点至三边均等距,可作三角形内切圆, 此圆圆心称“内心”,如此定义理当然.   五心性质别记混,做起题来真是好
所谓三角形的"四心",是指三角形的四种重要线段相交而成的四类特殊点.它们分别是三角形的内心,外心,垂心与重心. 1.垂心 三角形三条边上的高相交于一点,这一点叫做三角形的垂心. 2.重心 三角形三条边上的中线交于一点,这一点叫做三角形的重心. 3. 三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称外心 4. 三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心, 重心 三边上中线的交点 垂心 三条高的交点 内心 内接圆圆心 三个角角平分线交点 外心 外接圆圆心 三条边的垂直平分线交点 还有一个心叫傍心:外角平分线的交点(有3个),(或傍切圆的圆心) 只有正三角形才有中心,这时重心,内心.外心,垂心,四心合一.
1.垂心 三角形三条边上的高相交于一点,这一点叫做三角形的垂心. 2.重心 三角形三条边上的中线交于一点,这一点叫做三角形的重心. 3. 三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称外心 4. 三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心, 重心 三边上中线的交点 垂心 三条高的交点 内心 内接圆圆心 三个角角平分线交点 外心 外接圆圆心 三条边的垂直平分线交点 还有一个心叫傍心:外角平分线的交点(有3个),(或傍切圆的圆心) 只有正三角形才有中心,这时重心,内心.外心,垂心,四心合一.
1.重心(三条中线的交点):到一顶点的距离等于到对边中点距离的2倍2.垂心(三条高的交点):AH*HD=BH*HE=CH*HF3.内心(三角平分线的交点):到三边的距离相等4.外心(三边中垂线的交点):到三个顶点的距离相等
垂心;3条高在三角形内相交与一点叫垂心重心;三角形3条边的中线到一个3个角相交于一点叫重心内心;3个角平分线相交于一点叫内心外心;外接圆圆心,3条边的垂直平分线交点

文章TAG:外心  性质  三角  三角形  外心的性质  
下一篇