1,怎样求幂函数的定义域

幂函数的定义域类型最多的。一般用观察法和转化为根式法比如y=x^3 观察法x属于Ry=x^3/2=vx^3x^3>=0x>=0

怎样求幂函数的定义域

2,幂函数的定义域值域单调性

幂函数中、偶函数,关于y轴对称,一、二象限 奇函数,关于原点对称,一、三象限 定义域在(0,正无穷)不在R则在一第一象限
幂函数中、偶函数,关于y轴对称,一、二象限 奇函数,关于原点对称,一、三象限 定义域在(0,正无穷)不在r则在一第一象限

幂函数的定义域值域单调性

3,幂函数有没有定义域

在我认知内是有的,X^a如果a小于等于0,x不等于0,如果有a=1/2n(n为正整数)x要大于等于0,简单讲就是如果有诸如根号下这类东西x要大于等于0我知道的是这样的,如有疏漏之处,还望指正,大家互相学习借鉴。一点鄙见,万望采纳,感激涕零。
因为函数f(x)的定义域为(0,1] 所以可得0

幂函数有没有定义域

4,幂函数的定义域

1 当a为负数时,定义域为(-∞,0)和(0,+∞);2 当a为零时,定义域为(-∞,0)和(0,+∞);3 当a为正数时,定义域为(-∞,+∞)。4 在(x2-2x)^(-0.5))^(-0.5)中,首先解x2-2x≠0,解出x≠0且x≠2,因此定义域为(-∞,0)∪(0,2)∪(2,+∞)。当a为不同的数值时,幂函数的定义域的不同情况如下:1 如果a为任意实数,则函数的定义域为大于0的所有实数;2 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;3 如果同时q为奇数,则函数的定义域为不等于0的所有实数。扩展资料:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:1 如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),2 如果q是奇数,函数的定义域是R,3 如果q是偶数,函数的定义域是[0,+∞)。4 当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).单调区间:当α为整数时,α的正负性和奇偶性决定了函数的单调性:①当α为正奇数时,图像在定义域为R内单调递增;②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增;③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减);④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。当α为分数时,α的正负性和分母的奇偶性决定了函数的单调性:①当α>0,分母为偶数时,函数在第一象限内单调递增;②当α>0,分母为奇数时,函数在第一、三象限各象限内单调递增;③当α<0,分母为偶数时,函数在第一象限内单调递减;④当α<0,分母为奇数时,函数在第一、三象限各象限内单调递减(但不能说在定义域R内单调递减);参考资料:搜狗百科——幂函数
1. 当a为负数时,定义域为(-∞,0)和(0,+∞);2. 当a为零时,定义域为(-∞,0)和(0,+∞);3. 当a为正数时,定义域为(-∞,+∞)。4. 在(x2-2x)^(-0.5))^(-0.5)中,首先解x2-2x≠0,解出x≠0且x≠2,因此定义域为(-∞,0)∪(0,2)∪(2,+∞)。扩展资料:幂函数的性质:(一)所有的图像都通过(1,1)这点.(α≠0) α>0时 图象过点( 0,0)和(1,1)。 (二) 单调区间: 当α为整数时,α的正负性和奇偶性决定了函数的单调性: ①当α为正奇数时,图像在定义域为R内单调递增; ②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增; ③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能 幂函数 说在定义域R内单调递减); ④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减;(三)当α为分数时,α的正负性和分母的奇偶性决定了函数的单调性: ①当α>0,分母为偶数时,函数在第一象限内单调递增; ②当α>0,分母为奇数时,函数在第一、三象限各象限内单调递增; ③当α<0,分母为偶数时,函数在第一象限内单调递减; ④当α<0,分母为奇数时,函数在第一、三象限各象限内单调递减(但不能说在定义域R内单调递减)。
没有啊,不是0就行X2-2X不等于0
幂函数X^a中X没有限制但a<0时,x≠0a为偶数时,x≥0(x2-2x)^(-0.5)中x的定义域满足:x^2-2x>0x(x-2)>0即:x>2或,x<0
形如y=x^a(a为常数)的函数,称为幂函数。 如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的, 必须指出的是,当x<0时,幂函数存在一个相当棘手的内在矛盾:[x^(a/b)]^(c/d)、[x^(c/d)]^(a/b)、x^(ac/bd)这三者相等吗?若p/q是ac/bd的既约分数,x^(ac/bd)与x^(p/q)以及x^(kp/kq)(k为正整数)又能相等吗?也就是说,在x<0时,幂函数值的唯一性与幂指数的运算法则发生不可调和的冲突。对此,现在有两种观点:一种坚持通过约定既约分数来处理这一矛盾,能很好解决幂函数值的唯一性问题,但幂指数的运算法则较难维系;另一种观点则认为,直接取消x<0这种情况,即规定幂函数的定义域为[0,+∞)或(0,+∞)。看来这一问题有待专家学者们认真讨论后予以解决。 因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点.(a≠0) (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)显然幂函数无界限。 (6)a=0,该函数为偶函数 {x|x≠0}。

文章TAG:幂函数  函数  定义  定义域  幂函数定义域  
下一篇