1,高中数学平面向量相关知识

A⊥B 则 x1x2-y1y2=0 A平行B则 x1y2-x2y1=0 A*B=|A|*|B|*cosa |A+B|要平方换成数量积的运算

高中数学平面向量相关知识点

2,数学平面向量的知识点总结

已知单位向量a,b间夹角为3分之2pai,则|4a-5b|等于
建议求助百度百科词条:平面向量。 http://baike.baidu.com/view/1431240.htm 既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。 向量的概念  既有方向(direction)又有大小(magnitude)的量叫做向量(物理学中叫做矢量),向量可以用小写黑体字母a,b,c,.......表示,也可以用表示向量的有向线段的起点和终点字母表示。只有大小没有方向的量叫做数量(物理学中叫做标量)。在自然界中,有许多量既有大小又有方向,如力、速度等。我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念。这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。

数学平面向量的知识点总结

3,向量的知识点

一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“ > ”错了,而| |>| |才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为( ),其中 、 满足 =1(可用(cos ,sin )(0≤ ≤2π)表示).特别: 表示与 同向的单位向量。例如:向量 所在直线过 的内心(是 的角平分线所在直线);例1、O是平面上一个定点,A、B、C不共线,P满足 则点P的轨迹一定通过三角形的内心。 (变式)已知非零向量AB→与AC→满足(AB→|AB→| +AC→|AC→| )

向量的知识点

4,平面向量的基础知识具体点

亲爱的楼主:相关概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。[1]3表示方法几何表示具有方向的线段叫做有向线段,我们以A为起点、B为终点的有向线段记作,则向量可以相应地记作。但是,区别于有向线段,在一般的数学研究中,向量是可以平移的。[2]坐标表示在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得: 向量的坐标表示a=xi+yj,我们把(x,y)叫做向量a的(直角)坐标,记作:a=(x,y)。其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。根据定义,任取平面上两点A(x1,y1),B(x2,y2),则向量AB=(x2-x1,y2-y1),即一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标加法向量加法的三角形法则已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量 向量加法的四边形法则AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连。对于零向量和任意向量a,有:0+a=a+0=a。向量的加法满足所有的加法运算定律,如:交换律、结合律。减法AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连终点、方向指向被减向量。-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。[2]数乘实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)设λ、μ是实数,那么满足如下运算性质:(λμ)a= λ(μa)(λ + μ)a= λa+ μaλ(a±b) = λa± λb(-λ)a=-(λa) = λ(-a)|λa|=|λ||a|[2]数量积已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2数量积具有以下性质:a·a=|a|2≥0a·b=b·ak(a·b)=(ka)b=a(kb)a·(b+c)=a·b+a·ca·b=0<=>a⊥ba=kb<=>a//be1·e2=|e1||e2|cosθ[2]向量积向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b, 向量积示意图则∠AOB=θ 叫做向量a与b的夹角,记作。已知两个非零向量a、b,那么a×b叫做a与b的向量积或外积。向量积几何意义是以a和b为边的平行四边形面积,即S=|a×b|。 若a、b不共线,a×b是一个向量,其模是|a×b|=|a||b|sin,a×b的方向为垂直于a和b,且a、b和a×b按次序构成右手系。若a、b共线,则a×b=0。 若a=(x1,y1,0),b=(x2,y2,0),则有: 向量积具有如下性质: a×a=0 a‖b<=>a×b=0 a×b=-b×a (λa)×b=λ(a×b)=a×(λb) (a+b)×c=a×c+b×c[3] 混合积 给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c 混合积具有下列性质: 三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1) 上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0 (abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)[ 祝您步步高升 期望你的采纳,谢谢
亲爱的楼主:相关概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。[1]3表示方法几何表示具有方向的线段叫做有向线段,我们以A为起点、B为终点的有向线段记作,则向量可以相应地记作。但是,区别于有向线段,在一般的数学研究中,向量是可以平移的。[2]坐标表示在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得: 向量的坐标表示a=xi+yj,我们把(x,y)叫做向量a的(直角)坐标,记作:a=(x,y)。其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。根据定义,任取平面上两点A(x1,y1),B(x2,y2),则向量AB=(x2-x1,y2-y1),即一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标加法向量加法的三角形法则已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量 向量加法的四边形法则AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连。对于零向量和任意向量a,有:0+a=a+0=a。向量的加法满足所有的加法运算定律,如:交换律、结合律。减法AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连终点、方向指向被减向量。-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。[2]数乘实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)设λ、μ是实数,那么满足如下运算性质:(λμ)a= λ(μa)(λ + μ)a= λa+ μaλ(a±b) = λa± λb(-λ)a=-(λa) = λ(-a)|λa|=|λ||a|[2]数量积已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2数量积具有以下性质:a·a=|a|2≥0a·b=b·ak(a·b)=(ka)b=a(kb)a·(b+c)=a·b+a·ca·b=0<=>a⊥ba=kb<=>a//be1·e2=|e1||e2|cosθ[2]向量积向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b, 向量积示意图则∠AOB=θ 叫做向量a与b的夹角,记作<a,b>。已知两个非零向量a、b,那么a×b叫做a与b的向量积或外积。向量积几何意义是以a和b为边的平行四边形面积,即S=|a×b|。若a、b不共线,a×b是一个向量,其模是|a×b|=|a||b|sin<a,b>,a×b的方向为垂直于a和b,且a、b和a×b按次序构成右手系。若a、b共线,则a×b=0。若a=(x1,y1,0),b=(x2,y2,0),则有:向量积具有如下性质:a×a=0a‖b<=>a×b=0a×b=-b×a(λa)×b=λ(a×b)=a×(λb)(a+b)×c=a×c+b×c[3]混合积给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c混合积具有下列性质:三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0(abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)[祝您步步高升期望你的采纳,谢谢

文章TAG:平面向量知识点梳理平面  平面向量  面向  
下一篇