1,小学数学思维方法有哪些

一、逆向思维方法二、对应思维方法 三、假设思维方法四、转化思维方法 五、消元思维方法 六、发散思维方法 七、联想思维方法八、量不变思维方法
一、平常学的公式是要用上的二、分析,运用最好的方法和技巧三、不怕多想,要多试四、平时多做些数学题,很多题的解决方法大都是一样的五、有少部分题会运用上逆向思维,正的行不通,就用反的想

小学数学思维方法有哪些

2,如何锻炼数学思维方式

如果你不是天才,那么只能熟能生巧,把不懂的东西重复重复再重复,自然就能创新。不管你所说的锻炼是为了成为数学家,还是应付考试,熟练永远是第一步。我能肯定的是你不会是数学系大二水平以上的人,因为数学专业的学习进行到一定程度,自然而然就具有某种程度的数学思维。不要着急,数学的奥妙,很难强行吸收,需要慢慢体会。
多做平面几何,立体几何等各种题。
多做多读
以数学的角度看问题
平时遇到题要多动脑筋,开阔思维,尽量一题多解,看看有没有更简单的方法,做题重在理解而不是记忆,掌握一类题的解题思路,做完题后要归纳总结

如何锻炼数学思维方式

3,数学中有哪些思维方法应该怎么运用

常用的数学方法很多,归纳法,图形法,函数法,假设法,分类法……等等。尽管方法众多,但除非遇到非常典型的题型(有一部分题的确是需要一两种固定的方法去解决的),否则不会一下子就想到要运用哪种方法。大多数的数学题都可以根据已知条件,列出方程、函数或画出图形,而直接得出答案。这时平时的积累就很重要,面对一道题,如果有种似曾相识的感觉,那么也就解出了一半了,根本不会去想自己是用了哪种数学方法做出的这道题。这就好比口语不是很好的人讲英文,有时候脑中会在思考语法是否有错,而在讲汉语的时候,谁也不会去想自己的主谓宾语是否有序一样。 因此,平时积累是最重要的,学习的过程就是一个积累的过程,几乎没有其他捷径。
到证明题 应该按题目给出的已知的思路去考虑..

数学中有哪些思维方法应该怎么运用

4,中学数学中几种常用的数学思想方法

山西省朔州市平鲁区李林中学 刘娟娟 数学是研究现实世界中数量关系和空间形成的一门科学。随着科学技术的不断发展,数学也从原始形态的数量关系向抽象化的数量关系发展。在发展的过程中,不仅建立了严密的理论体系,而且形成了一整套的数学思想方法。本文结合有关的例题,对数学中常用的几种思想方法作一番探讨。 一、数形结合的思想方法 数形结合思想方法就是把抽象的数学符号语言和直观的几何图形联系起来,把抽象思维与形象思维相结合,通过“以形助数” 、“以数解形” ,使抽象问题具体化,复杂问题简单化,从而达到解答目的。 数形结合应用甚广,不仅在解选择题、填空题中显示它的优越性,而且在解某些抽象数学问题时也起到事半功倍的效果。“以数解形” 是解析几何的主线,“以形助数” 是数形结合的研究重点。如何“以数转形”是数形结合的关键,图解法是数形结合的具体体现。数形结合是近年中、高考重点考查的思想方法之一。下面我们结合下面的例子作简单的分析: 例1. 已知 0

5,数学中常用的思想方法有几种

1. 函数与方程的思想 2.数形结合思想 3.分类讨论思想 4.等价转化思想5.无限逼近思想
一、常用的数学思想(数学中的四大思想) 1.函数与方程的思想 用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。 深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。 2.数形结合思想 在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透。 3.分类讨论思想 在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论。 供珐垛貉艹股讹瘫番凯 分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复 ;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。 4.等价转化思想 等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。 常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化。

6,数学思想方法有哪几种

中学数学重要数学思想 函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想; 2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想; 3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。 1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。 2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。 3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。 4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系. 5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。而以形为手段的数形结合在高考客观题中体现。 6.我们要抓住以下几点数形结合的解题要领: (1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可; (2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用; (3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的。 分类讨论的数学思想 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。 1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种: (1)涉及的数学概念是分类讨论的; (2)运用的数学定理、公式、或运算性质、法则是分类给出的; (3)求解的数学问题的结论有多种情况或多种可能性; (4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的; (5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的。 2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用。根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏 ,包含各种情况,同时要有利于问题研究。 化归与转化思想 所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题。 立体几何中常用的转化手段有 1.通过辅助平面转化为平面问题,把已知元素和未知元素聚集在一个平面内,实现点线、线线、线面、面面位置关系的转化; 2.平移和射影,通过平移或射影达到将立体几何问题转化为平面问题,化未知为已知的目的; 3.等积与割补; 4.类比和联想; 5.曲与直的转化; 6.体积比,面积比,长度比的转化; 7.解析几何本身的创建过程就是“数”与“形”之间互相转化的过程。解析几何把数学的主要研究对象数量关系与几何图形联系起来,把代数与几何融合为一体。
所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。 1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。 3.分类讨论思想: 当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。 4.方程思想: 当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。 另外,还有归纳类比思想、转化归纳思想、概率统计思想等数学思想,例如利用归纳类比思想可以对某种相类似的问题进行研究而得出他们的共同点,从而得出解决这些问题的一般方法。转化归纳思想是把一个较复杂问题转化为另一个较简单的问题并且对其方法进行归纳。概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。 另外,数学方法即不是能力也不是方法,但它是用来指导方法的.

文章TAG:数学  数学思维  思维  思维方法  数学思维方法  
下一篇