1,最近怎么进中同空间进不去

他设置权限了吧,不让别人进吧
怎么说对你满意这个空间帮个很大个忙

最近怎么进中同空间进不去

2,club有什么

基础功能 Club基本信息建设与管理(管理Club名称/分类/权限/介绍/图片等) Club成员管理(审批加入/设置管理员/设置黑名单等) Club版面与文章管理(建设与修改版面/删除与移动文章/置顶与加精文章) 文章支持多媒体写入与展现(同QQ空间日志功能) 高级功能 在自己QQ空间首页设置Club模块 自己Club的更新信息将显示在QQ上(内测期暂不开放) 通过短消息邀请他人加入Club 通过短消息订阅加入Club的更新提醒(内测期暂不开放) 搜索Club-在QQ空间中Club搜索,就可直接输入关键字进行搜索 在Club中发表的文章同时保存到自己QQ空间一份 转载Club中的文章到自己的QQ空间一份 拓展功能 Club 称号体系-创建者可自由设置该Club成员的积分升级体系(内测期暂不开放) Team play功能-创建者可运用该功能,便捷组织成员在Club中的活动,如抽奖,猜谜,团购等 (内测期暂不开放) 加入步骤: a) 在新手频道中,点击FS俱乐部按钮,在随后的俱乐部目录页面中选择您所要加入的俱乐部。(您可以通过输入部分或全部俱乐部名称来搜索特定的俱乐部) b) 当您选中该俱乐部时,目录右方会有该俱乐部的相关信息。此时点击加入俱乐部,即可进入该俱乐部窗口 c) 点击左下角的加入俱乐部按钮,然后点击确认,即完成俱乐部加入申请。此后您要做的就是等待会长批准您加入了。 PS:如果您当时就想取消申请的话,点击俱乐部窗口中的加入俱乐部按钮旁的取消申请按钮,即可搞定; 如果过了几天您又想取消申请俱乐部,而又忘了自己上次申请的是哪个俱乐部时,只需要在我的信息-所属俱乐部中即可查看到自己所申请的俱乐部名称。然后在俱乐部列表中找到该俱乐部,点击“加入俱乐部”后,取消申请即可。 退出步骤:参照加入步骤,找到自己所属的俱乐部,然后点击退出按钮即可。 不要任何条件..

club有什么用

3,spdf轨道

电子亚层之一 在相同电子层中电子能量还有微小的差别,电子云形状也不相同,根据这些差别把一个电子层分为几个亚层。电子亚层可用表示,=0、1、2、3、…(n-1),n为电子层数。即K层(n=1)有0一个亚层(s);L层(n=2)有0、1两个亚层,即2s、2p;M层(n=3)有0、1、2三个亚层,即3s、3p、3d。同理N层有4s、4p、4d、4f四个亚层。不同亚层的电子云形状不同,s亚层(=0)的电子云形伏为球形对称;p亚层(=1)的电子云为无柄哑铃形(纺锤形);d亚层(=2)的电子云为十字花瓣形等。同一电子层不同亚层的能量按s、p、d、f序能量逐渐升高。 电子亚层之二 在同一电子层中,电子的能量还稍有差异,电子云的形状也不相同。因此电子层还可分成一个或n个电子亚层。 通过对许多元素的电离能的进一步分析,人们发现,在同一电子层中的电子能量也不完全相同,仍可进一步分为若干个电子组。这一点在研究元素的原子光谱中得到了证实。 电子亚层分别用s、p、d、f等符号表示。不同亚层的电子云形状不同。s亚层的电子云是以原子核为中心的球形,p亚层的电子云是纺锤形,d亚层为花瓣形,f亚层的电子云形状比较复杂。 电子亚层之三 K层只包含一个s亚层;L层包含s和p两个亚层;M层包含s、p、d三个亚层;N层包含s、p、d、f四个亚层。 受磁量子数的控制,s层有一个轨道,p层有三个轨道,d层有五个轨道,等等,(根据自旋量子数,每个轨道可容纳2个电子)。 由于亚层的存在,使同一个电子层中电子能量出现不同,甚至出现低电子层的高亚层能量大于高电子层的低亚层,即所谓的能级交错现象。各亚层能量由低到高排列如下: 1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d....... 有一个公式可以方便记忆:ns<(n-2)f<(n-1)d=6,d前的n>=4。
不懂啊

spdf轨道

4,自旋量子数怎么通过nlm求

因为自旋角动量量子数ms=+1/2(现实为ms=±1),所以每个轨道只能排一个电子,原子轨道的数目由n,l,m决定:因为m=±1,所以n>1,l>0时才存在轨道.。n=2,l=1,m=±1——2个轨道n=3,l=1,m=±1——2 l=2,m=±1——2……以此类推主量子数为n时有(n-1)*2个轨道由此可知前四个稀有气体原子序数为2,6,12,201. 简介:自旋磁量子数用ms表示。除了量子力学直接给出的描写原子轨道特征的三个量子数n、l和m之外,还有一个描述轨道电子特征的量子数,叫做电子的自旋磁量子数ms。原子中电子除了以极高速度在核外空间运动之外,也还有自旋运动。电子有两种不同方向的自旋,即顺时针方向和逆时针方向的自旋。 它决定了电子自旋角动量在外磁场方向上的分量。2. 介绍:原子中电子除了以极高速度在核外空间运动之外,也还有自旋运动。电子有两种不同方向的自旋,即顺时针方向和逆时针方向的自旋。 它决定了电子自旋角动量在外磁场方向上的分量。ms=+或-1/2。3. 发展历程:自旋的发现,首先出现在碱金属元素的发射光谱课题中。于1924年,沃尔夫冈·泡利首先引入他称为是“双值量子自由度”,与最外壳层的电子有关。这使他可以形式化地表述泡利不相容原理,即没有两个电子可以在同一时间共享相同的量子态。
原子的运动状态由n, l, ml, ms四个量确定,所以n=2原子运动状态无法确定。 n=2 l=1 m=0,这里的m是指ml吧(磁量子数),注意这几个量的关系:n=1,2,... l=0,1,2,...,n-1;ml=0,±1,...,±l;ms只能去正负1/2,所以可以确定运动状态:k=2*2*5*2=40; n=4 l=1有几个原子轨道?几种运动状态? n=4,有4个原子轨道,运动状态算法同上; n=3 有几个能级? n=3 l=2有几个能级? n=3有3个能级,若l=2,就只有一个了 角量子数=2的能级中有几个原子轨道? 就是l=2,故至少有3个轨道 在角量子数为l 的能级中,最多能容纳的电子数为多少? l=1,这个最多就是所有层都带电子 最后一问,相同,因为他们在同一个能级上

5,产生对映异构体的必要条件是什么

产生对映异构体的必要条件是分子不具有对称性(如:对称面,对称轴,对称中心等)。互为实物与镜像而不可重叠的立体异构体,称为对映异构体 (Enantiomer,简称为对映体),对映异构体都有旋光性,其中一个是左旋的,一个是右旋的,所以对映异构体又称为旋光异构体。1、两个互为镜像而不能重合的立体异构体,称为对映异构体,简称对映体。2、对映体是指具有相同分子式的化合物中,由于原子在空间配置不同而引起的同分异构现象。3、互为旋光异构体的两种化合物,由于其中一个不对称碳原子的取代基在空间上取向不同而互成物体与镜像的关系,并且两者在空间上不能重叠,它们被称为对映体。扩展资料:一、由来1808年马鲁斯发现了偏振光。其后,法国物理学家比奥特法国结晶学家邬于及化学家等人都先后发现了许多无机物晶体及某些有机物质具有使平面偏振光的振动平面发生旋转的性能。但他们却未能探索出这种旋光差别的原因。1848年Louis Pasteur(1822-1895),他当时是Biot的助手,巴黎师范大学的青年教师刚从Besanson皇家学院毕业(获科学博士学位)。为了使他具备晶体学研究方面的某些经验,其导师要他对Prouostage的一项有关酒石酸和外消旋酒石酸的晶体形式的工作镜像重新调查研究。巴斯在他的工作中,他肯定了Prouostage的观察,并注意到外消酒石酸钠铵的晶体是由二种具有不同的平面性质的晶体所组成,它们的晶型关系就好像人左右手关系一样,这二种等重的晶体混合一起时,其混合液却没有显示旋光性。二、相关性质对映体具有相同的物理性质(如熔点,沸点,溶解度,折射率,酸性,密度等),热力学性质(如自由能,焓、熵等)和化学性质。除非在手性环境(如手性试剂,手性溶剂)中才表现出差异。对映体对偏振光的作用不同,它们的比旋光度数值相同,但方向相反。对映体的生物活性不相同,化学反应中表现出等速率。等量的左旋体与右旋体的混合物构成外消旋体。 从对映体中分离出单纯一个光学异构体的方法称拆解。最普通的拆解方法是将消旋体与光学活性相反的离子(称拆解剂)作用生成非对映体。参考资料来源:搜狗百科-对映异构体
产生对映异构体的必要条件是:分子不具有对称性(如:对称面,对称轴,对称中心等)。对映异构体都有旋光性,其中一个是左旋的,一个是右旋的。 所以对映异构体又称为旋光异构体. 简单的说也就是两个异构体之间的关系就如同一个物体的立体结构在照镜子,这个立体结构和它在镜子中的像互为对映异构体。 旋构造异构是指分子式相同、但构造不同,即分子中原子间的连接方式和次序不同的异构。
天然α-螺旋是右手螺旋对映异构体是左手α-螺旋

6,从波密介质到波疏介质会反射吗会有半波损失吗反射一定有半波损

你说的半波损失,是入射光垂直于交界面的情况,那么波疏到波密有pi的相位变化,波密倒波疏没有。波密到波疏当然会有反射,要不全反射怎么来的。对于非垂直入射情况,有一个常用的反射,折射方程可以计算其反射,折射的强度,方向,还有波的相位变化。至于详细的如何导出这个方程,要解满足某些边界条件的麦克斯韦方程组,当然这都是大学内容了。
什么是反射波的半波损失现象 详细: 波的属性定律是用波的传播速度与波面等宏观量来描述的规律,然而,任何波动都是微观的媒质粒子振动的传播形成的,波的属性定律却不曾涉及媒质微观粒子的运动,如果从媒质粒子来讨论波动,那又可以得到怎样结果呢?在《论机械横波中能量的传递》、《论机械横波中媒质质元所受的力》等文中已经详细论述了波动时均匀媒质中的媒质粒子的运动情况,所以本文只需讨论在媒质密度不同的分界面处波束入射点的媒质粒子的运动,因为反射与折射之后波动又回到均匀媒质中。在均匀的媒质中,同一个媒质粒子的运动可能总在不断地变化着,但几乎在同一时刻媒质粒子的速度向其传播方向上的下一个媒质粒子进行了大小不变的传播,空间每一个媒质粒子似乎在媒质粒子密度产生的属性力的作用下而发生运动速度的改变,其实质却是波动的媒质粒子间的速度定向传播的结果。总之,对于同一个媒质粒子而言,无论其速度为多少,传播后一定能够使下一个粒子获得相同的速度,即媒质粒子的速度在传播过程中不会发生突变。正是因为均匀媒质中的媒质粒子间的等速传播,并没有造成空间媒质粒子新的不平衡的分布,所以这时并不会因空间某个媒质粒子的振动而形成新的波源,媒质粒子还是传播着由原始振源产生的波动。实际上,即使波动在均匀的媒质中传播,也可以把认为这是在两种密度不同的媒质中传播的特殊情况,在空间任意找一个平面都可以作为两种媒质的分界面。在这种情况下,分界面入射点处的媒质粒子的振动速度及相位大小均大小不变方向不变地从前一种媒质密度的媒质粒子传递给后一种媒质密度的媒质粒子,而且由于在两种媒质中波动的传播速度相等,根据波动属性定律可以判断波动的传播方向并没有发生改变。上一媒质粒子的运动动能也完全传递给下一媒质粒子,所以,波动在同种均匀的媒质中传播不会发生反射。在自由的媒质中传播的波动,实际上媒质粒子间并没有直接传递振动速度,只是因为前振点的运动离开了平衡位置之后 ,在其位置上的局部空间形成了粒子密度不平衡的空间即密度梯度场空间,后面的媒质粒子在这种密度梯度场空间发生属性运动而具有速度。同样地因这些媒质粒子的运动再引起更远一些的局部空间产生密度梯度场空间,引起这些空间的媒质粒子又产生属性运动。这就是波动在媒质中的传播过程,也是媒质粒子的振动状态及其相位的传递过程。如果波动的传播媒质的密度在空间有所变化,在空间形成较为明显的密度分界面,则该分界面就是波动波束的入射平面(或者折射平面),入射波束在前一种媒质密度中的传播至分界面到达入射点时,媒质粒子的振动同样地在入射点的局部空间引起了媒质粒子的密度梯度场,入射点局部空间应该分解为两部分,其中一部分在入射媒质之中,其中一部分在折射媒质之中。在入射媒质密度与折射媒质密度相同的情况下,入射端的媒质振动动能全部都转化为折射端的媒质密度的不平衡状态,所以在入射端并没有多余的媒质粒子的累积而使入射端产生与粒子振动方向相反的额外密度梯度,在折射端由入射端媒质振动动能产生的媒质密度的不平衡引起了媒质粒子的属性运动,再以媒质粒子的动能形式还原出来,这时粒子动能与上一粒子的动能是完全相同的。在入射媒质密度与折射媒质密度不相同的情况下,入射端的媒质振动动能不可能全部都转化为折射端的媒质密度的不平衡状态,这引起了入射端媒质粒在其运动方向上产生了多余了媒质粒子的堆积,从而使入射端局部空间产生与振动方向相反的额外密度梯度,使该局部空间的媒质粒子产生了与原来振动方向相反振动,这就是反射波波源的起因。正是在这种情况下,入射波束在入射点相当于一个波源,因其激发的反射波的媒质粒子的振动速度也就是反抗振源矢量,恰好与振源媒质的振动方向相反,这就是反射波相位与入射波相位反相的原因。在经典物理中,把这种反射波相位与入射波相位相反称之为半波损失,认为波在反射时损失了半个波长,这实际是不正确的,波在反射时并没有发生半个波长的损失,只是反射波是以入射波在入射点为波源而形成的波动,它与入射波已经不是同一列波动,它们当然反相。虽然入射端媒质粒子的动能没有完全转化为折射端的粒子密度的不平衡,但是折射端的媒质粒子还是同样地在密度梯度场中发生了与入射波同相的属性运动,只是这时媒质粒子动能小于入射端媒质粒子的动能。由此可以知道,波动从一种媒质进入另一种媒质时,在分界面处波动的相位并没有发生改变,波动中无论是媒质前振点的振动速度还是振动相位都大小不变地向后振点进行了传播。只有波动发生反射时,媒质粒子振动相位才发生反相。如果通过更详细的分析,还可以发现,媒质粒子的振动速度在两密度不同的媒质分界面的波动反射时都会发生反相,而是只有平行于分界面的速度分量才是反相反射,垂直于分界面的速度分量却是仍然按原振动方向反射。如所示,波束1是入射波速,2是反射波束,3是折射波束, 是入射波束的媒质粒子振动速度矢量, 是反射波束的媒质粒子的反抗波源矢量,实际上,垂直于分界面的矢量的方向相同,并没有反抗之意义,这主要是因为该速度矢量在运动过程直接进入了折射媒质之中,并没有引起入射媒质密度的额外不平衡,而依然传递着原来的不平衡状态,所以使媒质粒子产生了原来方向的属性运动。

文章TAG:空间  最近  怎么  进不去  中同空间  
下一篇