1,甚么是变速电动机

可以改变速度的电动机

甚么是变速电动机

2,变速电动机的变速原理是什么

交流电机1调频,用变频器。2调相。用可控硅。3调级,在机内部固定几种转速。直流电机,调压。还有手动离合器调速和电磁离合器调速。

变速电动机的变速原理是什么

3,变速电机的构造是什么样的

双速电机一般是改变绕组的接线方式从而改变电机的极对数来改变转速的。
什么变速?用齿轮可以变速,用变频器也可以变速啊
变速电机有通过改变频率进行变速的,电机为普通电机,还有一种是通过调节线圈砸数来调节电机转速的。
无级变速得电机里面的定子线圈只有一种,它是通过变频器输出电压的变化而调速的,多速电机是通过调节电机的极对数来调节电机转速的,还有一种是调节线圈砸数来调节电机转速的

变速电机的构造是什么样的

4,变频电机的工作原理是什么应用于那些方面

变频电机与普通电机的最大区别就多了一个独立的降温风扇。这个风扇不受变频控制,转速恒定,不管电机转速多慢,风扇的转速是恒定的。变频电机的作用与普通电机一样,只不过是与变频器组合使用以节能和控制输出转数。
一个负载特性较硬的异步电动机,它的转速很接近其电磁转速(同步转速)。如果设法改变电动机的供电频率,就可以改变电动机的转速。这就是变频电动机的工作(调速)原理。
个人认为变频电机这名称有问题 我个人认为一般的交流鼠笼电机都可以接在变频器上使用能不能要变频器控制电机是看负荷决定的!
一个负载特性较硬的异步电动机,它的转速很接近其电磁转速(同步转速)。如果设法改变电动机的供电频率,就可以改变电动机的转速。这就是变频电动机的工作(调速)原理。

5,变速电机的工作原理是什么

变频电机是根据电源频率的改变,使得转速改变,电机本身绕组不发生变化。还有就是频率不变通过改变电机的内部绕组链接方式来实现,比如电机的绕组由三角形变成双星形已达到提升电机转速的目的。
变速电机有多种:bai直流变速大多是调整电枢电压,实现变速。交流线绕du电机的调速也是调整转zhi子绕组dao的电压来调速,鼠笼式电机有通过改变绕组接线方式来调速版,权还有采用改变输入电压频率来调速的......各种调速方法不同,原理不同。
如果需要很正式的回答的话那给公式的那位回答的就很好了,如果是通俗的说的话我就说一下:首先你要明白一点,不能因为要改变电机的速度而将功率降低!电机的运转是靠电流的频率和电机内的磁极数来决定的,你可以看一下变频器的工作原理和电机的工作原理。还有一种变速电机是通过内部齿轮的速比来实现的。

6,什么是变频电机

简单点,交流电机(一定是交流电机,直流电就一个频率更别提变频了)启动的时候电流会是工作电流的7-8倍甚至更大。一般小交流电机电流大也大不到那里去。就直接启动了。但是大型交流电机也就是超过7.5kw的电机启动时候电流无比的大,这时候直接启动会使电机发热损坏另外对电网的冲击也很可观。所以需要加变频器。、变频器通过电力半导体的通断把工频的也就是我们所说的380v 50hz的频率改变,电机启动时频率一点点增加,实现交流电机的软启动,精确调速、过载过流过压保护等功能!
变频电机的特点 1、电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1) 尽可能的减小定子和转子电阻。 减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增 2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。 2、结构设计 再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题: 1)绝缘等级,一般为f级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。 2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。 3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。 4)防止轴电流措施,对容量超过160kw电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。 5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。
变频电机采用“专用变频感应电动机+变频器”的交流调速方式,使机械自动化程度和生产效率大为提高设备小型化、增加舒适性,目前正取代传统的机械调速和直流调速方案。电磁设计 对普通异步电动机来说,在设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:1) 尽可能的减小定子和转子电阻。减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增 2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。结构设计 再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题: 1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。 2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。 3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。 4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。 5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。变频专用电动机具有如下特点: B级温升设计,F级绝缘制造。采用高分子绝缘材料及真空压力浸漆制造工艺以及采用特殊的绝缘结构,使电气绕组采用绝缘耐压及机械强度有很大提高,足以胜任马达之高速运转及抵抗变频器高频电流冲击以及电压对绝缘之破坏。平衡质量高,震动等级为R级(降振级)机械零部件加工精度高,并采用专用高精度进口轴承,可以高速运转。强制通风散热系统,全部采用进口轴流风机超静音、高寿命,强劲风力。保障马达在任何转速下,得到有效散热,可实现高速或低速长期运行。经AMCAD软件设计的YP系列电机,与传统变频电机相比较,具备更宽广的调速范围和更高的设计质量,经特殊的磁场设计,进一步抑制高次谐波磁场,以满足宽频、节能和低噪音的设计指标。具有宽范围恒转矩与功率调速特性,调速平稳,无转矩脉动。与各类变频器均具有良好的参数匹配,配合矢量控制,可实现零转速全转矩、低频大力矩与高精度转速控制、位置控制及快速动态响应控制。YP系列变频专用电机可配制刹车器,编码器供货,这样即可获得精准停车,和通过转速闭环控制实现高精度速度控制。采用“微电机+变频专用电机+编码器+变频器”实现超低速无级调速的精准控制。YP系列变频专用电机通用性好,其安装尺寸符合IEC标准,与一般标准型电机具备可互换性。变频电机的构造原理 电动机的调速与控制,是工农业各类机械及办公、民生电器设备的基础技术之一。随着电力电子技术、微电子技术的惊人发展,采用“专用变频感应电动机+变频器”的交流调速方式,正在以其卓越的性能和经济性,在调速领域,引导了一场取代传统调速方式的更新换代的变革。它给各行各业带来的福音在于:使机械自动化程度和生产效率大为提高、节约能源、提高产品合格率及产品质量、电源系统容量相应提高、设备小型化、增加舒适性,目前正以很快的速度取代传统的机械调速和直流调速方案。 由于变频电源的特殊性,以及系统对高速或低速运转、转速动态响应等需求,对作为动力主体的电动机,提出了苛刻的要求,给电动机带来了在电磁、结构、绝缘各方面新的课题。变频电机的应用 变频调速目前已经成为主流的调速方案,可广泛应用于各行各业无级变速传动。 特别是随着变频器在工业控制领域内日益广泛的应用,变频电机的使用也日益广泛起来,可以这样说由于变频电机在变频控制方面较普通电机的优越性,凡是用到变频器的地方我们都不难看到变频电机的身影

文章TAG:变速  电机  甚么  变速电动机  变速电机  
下一篇