本文目录一览

1,小数的概念是什么

小数点以后的数

小数的概念是什么

2,小数定义

小数由整数部分、小数部分和小数点组成。8,6等都是整数,他没有小数部分!

小数定义

3,小数的含义

小数的含义把一个整体平均分成几份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几……可以用小数表示。一位小数表示十分之几,二位小数表示百分之几,三位小数表示千分之几……含义:(1)0.1元是怎么回事?1元就是10角,1角就是十分之一元,用小数表示就是0.1元。1元是100分,1分就是一百分之一元,用小数表示就是0.01元。(2)0.1米呢?0.01米呢?1米平均分成10份每份是1分米,也就是十分之一米。可以用小数表示每份长度为0.1米。1米平均分成100份每份是1厘米,也就是百分之一米,可以用小数表示每份长度为0.01米。(3)一个为1的正方形怎么表示0.1?首先:1表示一个整体,把正方形看作整体1,平均分成10分,表示其中的一份。

小数的含义

4,小数是怎样定义的

把分母是10、100、1000、……的十进分数.改写成不带分母形式的数,叫做小数。 。象0.1、0.07、2.23、30.079 都是小数。小数中间的圆点“.”叫做小数点。小数点的左边的部分叫做整数部分,小数点的右边部分叫做小数部分。如2.23,“2”是整数部分,“23”是小数部分;30.079,“30”是整数部分,“079”是小数部分。整数部分是零的小数叫做纯小数。纯小数比1小,如0.1、0.07是纯小数;整数部分不为零的小数叫做带小数。带小数比1大,如2.23、30.079是带小数。 根据小数的定义可知,认识小数应在认识分数之后,但是,目前小学数学教材里一般把小数的认识分为两个阶段:第一阶段通过认识货币、商品标价,让学生有个初步的认识,不包括十进分数的意义。第二阶段由十进复名数借助直观教具进行抽象概括,使学生认识小数的本质是十进分数。
小数的末尾不是0

5,小数的具体含义是什么

小数的含义 小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。根据十进制的位值原则,把十进分数仿照整数的写法写成不带分母的形式,这样的数叫做小数.小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号,小数点左边的部分是整数部分,小数点右边的部分是小数部分.整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数.例如0.3是纯小数,3.1是带小数. 要了解小数的意义,可从分数的意义着手,分数的意义可从子分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部份的量称为「分量」,而「分数」就是用来表示或纪录这个「分量」。例如:2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。例如1/10记成0.1、2/100记成0.02、5/1000记成0.005……等。其中的「.」称之为小数点,用以分隔整数部分与无法构成整数的小数部分。整数非0者称为带小数,若为0则称纯小数。由此可知,小数的意义是分数意义的一环。
当测量物体时往往会得到不是整数的数,古人就发明了小数来补充整数 小数是十进分数的一种特殊表现形式。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。 根据十进制的位值原则,把十进分数仿照整数的写法写成不带分母的形式,这样的数叫做小数.小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号,小数点左边的部分是整数部分,小数点右边的部分是小数部分.整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数.例如0.3是纯小数,3.1是带小数. 同整数一样,小数的计数单位也按照一定的顺序排列起来,它们所占的位置叫做小数的。

6,小数的所有概念

一、 小数的意义 要了解小数的意义,可从分数的意义著手,分数的意义可从子分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部份的量称为「分量」,而「分数」就是用来表示或纪录这个「分量」。例如:2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。例如1/10记成0.1、2/100记成0.02、5/1000记成0.005……等。其中的「.」称之为小数点,用以分隔整数部分与无法构成整数的小数部分。整数非0者称为带小数,若为0则称纯小数。由此可知,小数的意义是分数意义的一环。 二、 小数的结构 小数记数系统是透过书写符号与物理数量的连结,来描述其规则。小数点往前算(左边)用以表示整数部分的量,第一位整数是纪录整数有几个一的量,该位置称为个位;小数点往前算的第二位整数纪录是纪录有几个十的量,该位置称为十位;……,以此类推。小数点往后算(右边)用以表示小数部分(不足1)的量,第一位小数是纪录有几个十分之一的分量,该位置称为十分位;小数点往后算的第二位小数是纪录有几个百分之一的分量,该位置称为百分位……,以此类推。数的多单位记数系统中,「十位」、「个位」、「十分位」、「百分位」……等,被称为「位名」;其所指示的数值「十」、「一」、「0.1」、「0.01」……等,被称为「位值」。「十」、「一」、「0.1」、「0.01」……等,可被用来当作被记数单位。 另外,「数」也可以由不同的记数单位「一」、「0.1」、「0.01」……等,来共同表示。从上述的小数结构来看,让学生建构小数的十进结构与位值概念,对学生的小数概念发展而言,是非常重要的。 三、 小数学习的认知过程 (一) Hiebert与Wearne的「书写性数学符号能力发展理论」 1.连结过程 可利用学童所熟悉的指示物与数学符号产生连结。例如,可从生活中的物品(如钱、公制的测量等),或教具(如数学积木)来引出小数的符号来,让学童以后看到「1.8」时,在心中就会有「1杯水和0.8杯水」。 2.发展过程 发展过程是指学童随著在指示物上的操弄,所发展出来的处理符号的程序。例如,学童透过积木的操弄,了解到单位若以"条”表示时会有小数的符号产生,进而发现到:不足一单位的量的表示法,除了分数以外,还有小数。 3.精致化过程 精致化是一种扩展语法程序到其他适当的情境的过程。例如,学童藉由积木了解到,以"条”为单位时,会有一位小数出现。而精致化的过程则是可以更进一步类化到两位小数的概念。 4.例行性过程 学童如果经常练习语法程序,则可以更有效率的运用数学符号来解决问题。 5.建造过程 学童把之前所学过的数学符号与规则,当作是新的数学符号系统的指示物,并把前述的四个认知过程重新再循环一次,以建立更抽象的数学符号系统。 (二)DEntremont的「小数学习的洋葱模式」 DEntremont认为小数学习的认知过程包括五种不同的层次,每一种层次是被外面的层次逐层所包围。概念性知识是小数知识的核心,学童为了要获得小数的概念性知识,必须一层一层的把上层的表皮给予剥掉。 1.具体物的层次 学童首先遇到的层次是具体物的层次。教师透过真实世界可见的物体引导学童进入小数的世界。例如,我们可用积木来介绍小数的位值概念,若我们把一条积木视为单位「1」,则一个积木视为「0.1」。 2.操作说明的层次 教师从原先使用具体物进行教学的方式,转换成以小数的符号表徵形式呈现的教学方式,其教学内容包括小数符号的介绍,以及如何应用小数符号。 3.程序的层次 学童不但可以单独的运用符号来进行小数的计算,也可以遵照小数计算的规则来进行运算。但并不会去反省自己刚刚到底做了哪些步骤。因此,即使学童会运算,并不代表该生就一定理解其背后的意义。 4.心智模式的层次 学童在心智模式的层次,不但不会盲目的遵循算则公式,而且还能清楚的知道他们解题时的理由。 5.抽象的层次 此时学童对於小数已有不错的直觉,不再需要可见的物体来帮助理解,他们对於「如何处理小数的问题」以及「为什麼」接能够给予统整起来。学童唯有达到这个阶段,才可获得小数知识的核心------小数概念的理解。 四、加减乘除加法 把两个数合并成一个数的运算 把两个小数合并成一个小数的运算 把两个分数合并成一个分数的运算 减法 已知两个加数的和与其中一个加数,求另一个加数的运算 已知两个加数的和与其中一个加数,求另一个加数的运算 已知两个加数的和与其中一个加数,求另一个加数的运算 乘法 求几个相同加数的和的简便运算 小数乘整数的意义与整数乘法意义相同 一个数乘纯小数就是求这个数的十分之几,百分之几…… 分数乘整数的意义与整数乘法意义相同 一个数乘分数就是求这个数的几分之几 除法 已知两个因数的积与其中一个因数,求另一个因数的运算 与整数除法的意义相同 与整数除法的意义相同
2010-5-5 10:20 满意回答 一、 小数的意义 要了解小数的意义,可从分数的意义著手,分数的意义可从子分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部份的量称为「分量」,

文章TAG:小数  小数的  概念  是什么  小数的概念  
下一篇