1,关于圆的知识

圆的周长公式=C=πd=2πr 圆的面积公式=S=π×r×r

关于圆的知识

2,九上数学圆知识点总结

九上数学圆知识点总结:圆的周长:C=2πr或C=πd、圆的面积:S=πr2 圆环面积计算方法:S=πR2-πr2或S=π(R2-r2)(R是大圆半径,r是小圆半径) 知识要点一、圆的概念 集合形式的概念1、 圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

九上数学圆知识点总结

3,九年级圆的基础知识

知识点1 圆的有关概念1. 圆心和半径:圆心确定位置,半径确定大小。等圆或同圆的半径都相等。2. 弦:圆上任意两点之间的线段。直径是圆中最长的弦。3. 弧:圆上任意两点之间的部分。完全重合的弧叫做等弧(强调度数相等且长度相等)4. 三角形的外心是三边垂直平分线的交点,它到三个顶点的距离相等。5. 经过不在同一条直线上的三个点唯一确定一个圆。【常作辅助线1】连接圆心和圆上的点,形成半径。知识点2 圆的有关性质 (1) 圆是中心对称图形,也是轴对称图形。(2) 弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中,有一组量相等,那么它们所对的其余各组量都分别相等。(3)垂径定理:垂直于弦的直径平分弦,也平分弦所对的优弧和劣弧。(4) 圆周角的性质:① 同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半②直径所对的圆周角是直角,90°的圆周角所对的弦是直径。【解题方法1】半径、弦长、弓高、圆心到弦的距离这四个量的关系是只要知道其中的两个就能求出另两个。【解题方法2】当弦长=R时,弦所对的圆心角=60°, 当弦长= 时,弦所对的圆心角=90° 当弦长= 时,弦所对的圆心角=120°,一条弦所对的圆周角中,同侧相等,异侧互补。【圆周角定理1的理解】①同弧所对的圆周角相等;②等弧所对的圆心角相等;③圆周角的度数等于它所对弧所对圆心角的一半;④圆周角的度数等于它所对弧度数的一半;【常作辅助线2】过圆心向弦作垂线,形成垂径定理的条件,构造直角三角形应用勾股定理进行计算。【常作辅助线3】利用直径,构造直角。
过o点做ab垂线,即平分ab于f,连ob,由相似三角形,则得角bof=角p,所以bf=5/2,所以ab=5 由勾股定理得pf=根号39,所以pb=根号39 -5/2,不懂可以追问哦。

九年级圆的基础知识

4,圆有哪些知识

圆的周长等于圆的直径乘3.14或圆的半径乘2乘3.14
C=πd=2πr (π≈3、14)
勾,股,弦.
圆的直径乘圆周率等于圆的周长
按照“格式塔”原理,圆是最简练的图形
4、弓形面积1) s弓形=s扇形-sδoab 2) s弓形=s扇形+sδoab 二、圆锥的侧面积和全面积1 把矩形abcd绕直线ab旋转一周得到的图形叫做圆柱.旋转轴直线ab叫做它的轴. 2 在轴ab上的矩形的边ab的长度叫做它的高.平行于轴的边dc旋转而成的曲面叫做它的侧面,无论旋转到什么位置,这条边都叫做圆柱的母线. 3 垂直于轴的边ad,bc旋转而成的圆面叫做它的底面 4、圆锥是由一个底面和一个侧面围成的,我们把圆锥 底面圆周上任意一点与圆锥顶点的连线叫做圆锥 的母线.连结顶点与底面圆心的线段叫做圆锥的高. 沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是它的侧面积与它的底面积的和. 5.设底面半径为r,母线长为l,则 s侧= l·2πr=πrl s全=πrl+πr 数量关系:外离:d>r+r四条公切线 外切:d=r+r三条公切线 相交:r-r<d<r+r两条公切线 内切:d=r-r一条公切线 内含:d<r-r当d=0时,两圆同心4、相切两圆的性质:如果两圆相切,那么切点一定在连心线上. 6、两圆相交的性质定理:相交两圆的连心线垂直平分两圆的公共弦. 7、公切线的性质 (1)如果两圆有两条外公切线,那么这两条外公切线长相等;如果两圆有两条内公切线,那么这两条内公切线长相等. (2)如果两圆有两条外(内)公切线,并且相交,那么交点一定在两圆的连心线上,并且连心线平分这两条公切线的夹角. 8、相交弦定理及其推论定理:圆内的两条相交弦,被交点分成的两条线段长的 积相等(pa·pb=pc·pd). 推论:如果弦与直径垂直相交,那么弦的一半是它分直 径所成的两条线段的比例中项(pc2=pd2=pa·pb). 9、切割线定理及推论定理:从圆外一点引圆的切线和割线,切线长 是这点到割线与圆交点的两条线段长的比例 中项(pa2=pb·pc或pa2=pd·pe). 推论:从圆外一点引圆的两条割线,这一点到两条割 线与圆的交点的两条线段长的积相等 (pb·pc=pd·pe).圆的有关性质 一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个 圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半 径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的 圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题; 6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦” ③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。 〖考查重点与常见题型〗 1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学 生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( ) (a)相等的圆心角所对的弧相等 (b)平分弦的直径垂直于弦 (c)长度相等的两条弧是等弧 (d)弦过圆心的每一条直线都是圆的对称轴 2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重 点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。

文章TAG:圆的知识圆的  知识  关于  
下一篇