本文目录一览

1,矩阵估计量

2*(§1+§2+…+§n)/n

矩阵估计量

2,fx12e丨x丨 求矩估计量

一次矩算不出来,用二次矩啊
我不会~~~但还是要微笑~~~:)

fx12e丨x丨 求矩估计量

3,二项分布的矩估计

f1x = max(x1,x2,......)=(f(x,λ))的n次方,那么定义的要求,根据所需的对应点就是了,但要小心指数分布,当x“0时f = 0
试验次数n是已知的吧,根据EX=np=X~求出p*=X~/n(X~是样本的均值,p*是p的距法估计)

二项分布的矩估计

4,参数估计的方法

参数估计方法:有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。在一定条件下,后面三个方法都与极大似然法相同。最基本的方法是最小二乘法和极大似然法
矩估计法 用样本矩代替相应的总体矩,如用样本均值估计总体均值。这称为pearson替换原理。最小二乘法 为了选出使得模型输出与系统输出yt尽可能接近的参数估计值,可用模型与系统输出的误差的平方和来度量接近程度。使误差平方和最小的参数值即为所求的估计值。极大似然法  选择参数θ,使已知数据y在某种意义下最可能出现。某种意义是指似然函数p(y│θ)最大,这里p(y│θ)是数据y的概率分布函数。与最小二乘法不同的是,极大似然法需要已知这个概率分布函数p(y│θ)。在实践中这是困难的,一般可假设p(y│θ)是正态分布函数,这时极大似然估计与最小二乘估计相同。

5,参数估计的标准定义是什么

参数估计   parameter estimation   根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。   估计量的评价标准:(1)无偏性,(2)一致性,(3)有效性,(4)充分性。   点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。例如,设一批产品的废品率为θ。为估计θ,从这批产品中随机地抽出n个作检查,以X记其中的废品个数,用X/n估计θ,这就是一个点估计。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。可以用来估计未知参数的估计量很多,于是产生了怎样选择一个优良估计量的问题。首先必须对优良性定出准则,这种准则是不唯一的,可以根据实际问题和理论研究的方便进行选择。优良性准则有两大类:一类是小样本准则,即在样本大小固定时的优良性准则;另一类是大样本准则,即在样本大小趋于无穷时的优良性准则。最重要的小样本优良性准则是无偏性及与此相关的一致最小方差无偏估计,其次有容许性准则,最小化最大准则,最优同变准则等。大样本优良性准则有相合性、最优渐近正态估计和渐近有效估计等。   区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。

6,考研数学三的范围

数学三:针对管理、经济等方向(1)考试内容:a.微积分(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);b.线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);c.概率论与数理统计(随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。(2)适用专业:a.经济学门类的理论经济学一级学科中的所有二级学科、专业;b.经济学门类的应用经济学一级学科中的统计学科、专业、统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、财政学(含税收学)、金融学(含保险学)、产业经济、国际贸易学、劳动经济学、国防经济。c.管理学门类的工程管理一级学科中的二级学科、专业;企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。d.管理学门类的农林经济管理一级学科中的所有二级学科、专业。
答:浙大教材是用来看概率论和数理统计部分的,不用全部看,只要看考纲要求的部分就行,高数看同济大学的教材概率统计随机事件和概率考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.随机变量及其分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(poisson)分布 及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为5.会求随机变量函数的分布.多维随机变量及其分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.随机变量的数字特征考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.大数定律和中心极限定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.数理统计的基本概念考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、分布和分布得上侧 分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.参数估计考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

文章TAG:矩估计  估计  矩阵  估计量  矩估计法  
下一篇