1,求助高中数学符号

就是求和的,比如K=1,n=10,那就是从第一个数加到第十个数,一直相加得的结果
求和符号从下面得k的 数值为起点例如K=1就从K1一直加到Kn.....一般在统计学用到...求回归方程
求和 念“seigema” 意思是 比如 下面k=1上面为n 后面式子为n+1 就是n=1,2,3。。。n 求n+1的和 写出来就是 =2+3+4+5+。。。+(n+1)
∩表示交集 ∈表示属于 ∞表示无穷 ⊙表示圆心 √表示根号 ∽表示相似 ∑表示总和 ≌表示全等 你去看高一的数学书好了
是西格玛就是Σ就是求和k=1,2,....n
英语名称:Sigma 汉语名称:西格玛(大写∑,小写σ),是第十八个希腊字母。 在希腊语中,如果一个单字的最末一个字母是小写sigma,要把该字母写成 ?,此字母又称final sigma(Unicode: U+03C2)。在现代的希腊数字代表6。 大写∑用于: 数学上的总和符号 比如: ∑Pi,其中i=1,2,...,T, 即为求P1 + P2 + ... + PT的和。 小写σ用于: 统计学上的标准差 西里尔字母的С及拉丁字母的S都是由Sigma演变而成。 洛克人X系列中大反派西格玛的代号 也指求和 这种写法表示的就是∑j=1+2+3+…+nn是相加数的个数,k=...是指第一个相加数。

求助高中数学符号

2,高中数学常用符号

符号 意义 ∞ 无穷大 PI 圆周率 |x| 函数的绝对值 ∪ 集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 自然对数 lg(x) 以2为底的对数 log(x) 常用对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 {x} 小数部分 x - floor(x) ∫f(x)δx 不定积分 ∫[a:b]f(x)δx a到b的定积分 [P] P为真等于1否则等于0 ∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求极限 f(z) f关于z的m阶导函数 C(n:m) 组合数,n中取m P(n:m) 排列数 m|n m整除n m⊥n m与n互质 a ∈ A a属于集合A #A 集合A中的元素个数
∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和, 如果f(n)是有结构式,f(n)应外引括号; ∑(n=p,q ; r=s,t)f(n,r) 表示 ∑(r=s,t)[∑(n=p,q)f(n,r)], 如果f(n,r)是有结构式,f(n,r)应外引括号; ∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积, 如果f(n)是有结构式,f(n)应外引括号; ∏(n=p,q ; r=s,t)f(n,r) 表示 ∏(r=s,t)[∏(n=p,q)f(n,r)], 如果f(n,r)是有结构式,f(n,r)应外引括号; lim(x→u)f(x) 表示 f(x) 的 x 趋向 u 时的极限, 如果f(x)是有结构式,f(x)应外引括号; lim(y→v ; x→u)f(x,y) 表示 lim(y→v)[lim(x→u)f(x,y)], 如果f(x,y)是有结构式,f(x,y)应外引括号; ∫(a,b)f(x)dx 表示对 f(x) 从 x=a 至 x=b 的积分, 如果f(x)是有结构式,f(x)应外引括号; ∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy, 如果f(x,y)是有结构式,f(x,y)应外引括号; ∫(L)f(x,y)ds 表示 f(x,y) 在曲线 L 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号; ∫∫(D)f(x,y,z)dσ 表示 f(x,y,z) 在曲面 D 上的积分, 如果f(x,y,z)是有结构式,f(x,y,z)应外引括号; ∮(L)f(x,y)ds 表示 f(x,y) 在闭曲线 L 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号; ∮∮(D)f(x,y,z)dσ 表示 f(x,y,z) 在闭曲面 D 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号; ∪(n=p,q)A(n) 表示n从p到q之A(n)的并集, 如果A(n)是有结构式,A(n)应外引括号; ∪(n=p,q ; r=s,t)A(n,r) 表示 ∪(r=s,t)[∪(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号; ∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集, 如果A(n)是有结构式,A(n)应外引括号; ∩(n=p,q ; r=s,t)A(n,r) 表示 ∩(r=s,t)[∩(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号

高中数学常用符号

3,跪求一些高中数学常用符号

1 几何符号⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △2 代数符号∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶3运算符号× ÷ √ ±4集合符号∪ ∩ ∈5特殊符号∑ π(圆周率)6推理符号|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨&; §① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥⊿ ⌒ ℃指数0123:o123符号 意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪ 集合并∩ 集合交≥ 大于等于≤ 小于等于≡ 恒等于或同余ln(x) 自然对数lg(x) 以2为底的对数log(x) 常用对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分[P] P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm⊥n m与n互质a ∈ A a属于集合A#A 集合A中的元素个数∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和, 如果f(n)是有结构式,f(n)应外引括号; ∑(n=p,q ; r=s,t)f(n,r) 表示 ∑(r=s,t)[∑(n=p,q)f(n,r)], 如果f(n,r)是有结构式,f(n,r)应外引括号; ∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积, 如果f(n)是有结构式,f(n)应外引括号; ∏(n=p,q ; r=s,t)f(n,r) 表示 ∏(r=s,t)[∏(n=p,q)f(n,r)], 如果f(n,r)是有结构式,f(n,r)应外引括号; lim(x→u)f(x) 表示 f(x) 的 x 趋向 u 时的极限, 如果f(x)是有结构式,f(x)应外引括号; lim(y→v ; x→u)f(x,y) 表示 lim(y→v)[lim(x→u)f(x,y)], 如果f(x,y)是有结构式,f(x,y)应外引括号; ∫(a,b)f(x)dx 表示对 f(x) 从 x=a 至 x=b 的积分, 如果f(x)是有结构式,f(x)应外引括号; ∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy, 如果f(x,y)是有结构式,f(x,y)应外引括号; ∫(L)f(x,y)ds 表示 f(x,y) 在曲线 L 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号; ∫∫(D)f(x,y,z)dσ 表示 f(x,y,z) 在曲面 D 上的积分, 如果f(x,y,z)是有结构式,f(x,y,z)应外引括号; ∮(L)f(x,y)ds 表示 f(x,y) 在闭曲线 L 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号; ∮∮(D)f(x,y,z)dσ 表示 f(x,y,z) 在闭曲面 D 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号; ∪(n=p,q)A(n) 表示n从p到q之A(n)的并集, 如果A(n)是有结构式,A(n)应外引括号; ∪(n=p,q ; r=s,t)A(n,r) 表示 ∪(r=s,t)[∪(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号; ∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集, 如果A(n)是有结构式,A(n)应外引括号; ∩(n=p,q ; r=s,t)A(n,r) 表示 ∩(r=s,t)[∩(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号;

跪求一些高中数学常用符号


文章TAG:高中数学符号高中  高中数学  数学  
下一篇