本文目录一览

1,分段函数 lingo

分段函数尽量不要这样写。可以用C写,然后编译成dll文件,然后lingo中用@user调用。

分段函数 lingo

2,已知双曲线的虚轴长为6一条渐近线的方程为3xy0求此双曲线的

虚轴长为62b=6b=3渐近线的方程为3x-y=0y=3x当双曲线是x^2/a^2-y^2/b^2=1时渐近线是y=±(b/a)x∴b/a=3a=1∴双曲线方程是x^2-y^2/9=1当双曲线是y^2/a^2-x^2/b^2=1时渐近线是y=±(a/b)x∴a/b=3a=9∴双曲线方程是y^2/81-x^2/9=1如果您认可我的回答,请点击“采纳为满意答案”,祝学习进步!
若焦点在x轴上,则设方程为 x2/a2 - y2/9 =1 渐近线 y =(3/a)x 所以 a=1所以双曲线方程就是 x2 - y2/9 = 1若焦点在y轴上 ,则设方程为 y2/a2 - x2/ 9 = 1渐近线 y=a/3 x 所以 a=9因此双曲线方程就是 y2/81 - x2/9 =1

已知双曲线的虚轴长为6一条渐近线的方程为3xy0求此双曲线的

3,求双曲线9y24x236的定点坐标焦点坐标焦点坐标实轴长虚轴

化为标准方程:x2/9-y2/4=1所以 a=3,b=2,c2=a2+b2=13,c=√13顶点坐标为(3,0)和(-3,0),焦点坐标为(√13,0)和(-√12,0),实轴长为2a=6,虚轴长为2b=4离心率e=c/a=√13/3渐近线方程为y=±(2/3)x
化为标准方程:x2/9-y2/4=1所以 a=3,b=2,c2=a2+b2=13,c=√13顶点坐标为(3,0)和(-3,0),焦点坐标为(√13,0)和(-√12,0),实轴长为2a=6,虚轴长为2b=4离心率e=c/a=√13/3渐近线方程为y=±(2/3)x
可化为x2/9-y2/4=1焦点坐标(√13,0)(-√13,0)实轴长6虚轴长4离心率√13/3渐近线方程y=±2/3x
可化为x2/9-y2/4=1焦点坐标(√13,0)(-√13,0)实轴长6虚轴长4离心率√13/3渐近线方程y=±2/3x
化为标准方程:x2/9-y2/4=1所以 a=3,b=2,c2=a2+b2=13,c=√13顶点坐标为(3,0)和(-3,0),焦点坐标为(√13,0)和(-√12,0),实轴长为2a=6,虚轴长为2b=4离心率e=c/a=√13/3渐近线方程为y=±(2/3)x

求双曲线9y24x236的定点坐标焦点坐标焦点坐标实轴长虚轴

4,大一高数空间曲线在某一点的切线和法平面怎么求

如果为参数曲线形式,就比较简单了,分别求x,y,z对参数t的倒数,将该点的值带入,就得到)该点的切向量,根据点向式和点法式写出切线和法平面。如果为两平面交线的形式,就稍微复杂一点,需要根据方程组求出z对x和y对x的偏导数,然后写出切向量,再进一步写出切线和法平面。扩展资料法平面是数学术语,是指过空间曲线的切点,且与切线垂直的平面,称为法平面。即垂直于虚拟法线的平面。例如,球体的中心为端点的射线,与球面所在的每一切点所在的切面即法平面(法面)。我们所接触到的空间,大至宇宙,小至细胞,其中都充满着五光十色、变幻纷杂的曲线。诸如太阳系行星的轨道,飞机的航道,盘山蜿蜒的公路,沙发里的弹簧,织物图案花纹,齿轮和凸轮的轮廓,生命遗传物质DNA的双螺旋结构,等等。DNA的双螺旋结构在人们接触到的曲线中,最简单的要算是直线和圆了。这些曲线是初等平面几何中讨论的对象。其次较为复杂的曲线是二次曲线,即椭圆、双曲线和抛物线。这些已经在平面解析几何里学习过,讨论的方法是用坐标和一元二次代数方程。对于更复杂的曲线,仅仅用初等代数一般是不能解决问题的。研究更加一般的光滑曲线的几何性质,微积分则是有力的工具。我们可以用微积分来推导三个刻划一条空间曲线几何性质的基本几何量,就是弧长、曲率和挠率。参考资料来源:百度百科-法平面参考资料来源:百度百科-空间曲线
这个比较复杂了,根据空间曲线的表达形式,一般有两种方法:1)如果为参数曲线形式,就比较简单了,分别求x,y,z对参数t的倒数,将该点的值带入,就得到该点的切向量,根据点向式和点法式写出切线和法平面。2)如果为两平面交线的形式,就稍微复杂一点,需要根据方程组求出z对x和y对x的偏导数,然后写出切向量,再进一步写出切线和法平面

5,余弦曲线的性质

高中新教村《数学》第一册(下)§4.8 正弦函数、余弦函数的图象和性质(一)正弦函数、余弦函数的图象 单位:河南省济源市第一中学 作者:石 明 秀 时间:2000年9月9日 一、教材分析: 本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的图象和性质》 的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法.为今后学习正弦型函数 y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用.二、学情分析: 在初中学生已经学习过三步作图法(列表,描点、连线)??“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础。动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。三、教学目标:依据教学大纲的要求,制订如下三维教学目标:知识目标是:1.理解几何法作图原理(难点); 2.掌握五点法作图(重点); 3.了解三角函数图象的变换作图.能力目标是:通过识记正、余弦曲线的形状特征,培养学生分析问题、 解决问题的能力;强化学生"数形结合"的数学思想.发展目标是:教给学生灵活的思维方法,培养学生的学习兴趣和勇于 探索、勇于创新的精神,提高综合素质.四、设计理念: 教无定法,贵在得法.诱思探究学科教学论认为:在教学思想上是启发式,在教学过程上是探究式,在教学价值上是发展式。德国教育学家第斯多惠也曾说过:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞.为了充分调动学生学习的积极性和激发学生的参与、探究和体验的欲望,让他们既动脑又动手,充分让学生参与教学活动。同时利用多媒体电教手段提高学生的学习兴趣.采用启发、引导和学生探究、实践、体验相结合的教学方法;教给学生“多动手、勤动脑、敢猜想、善发现、重体验、促发展”的学习方法.体现“教师是主导,学生是主体”的教学原则.使学生不但“学会”而且“会学”,并逐步感受到数学的美,产生成就感,从而极大地提高对数学的学习兴趣.也只有这样做,才能适

6,数学符号大全

数学符号有: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ? ‖ ∠ ? ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ?∥α β γ δ ε δ ε ζ Γ。一、数学符号1、数学符号的发明及使用比数字要晚,但其数量却超过了数字。2、现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。二、运算符号1、如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。三、性质符号1、如正号“+”,负号“-”,正负号(以及与之对应使用的负正号)。四、省略符号1、如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数)。2、双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠)。
数学符号有: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ? ‖ ∠ ? ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ?∥α β γ δ ε δ ε ζ Γ。一、数学符号1、数学符号的发明及使用比数字要晚,但其数量却超过了数字。2、现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。二、运算符号1、如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。三、性质符号1、如正号“+”,负号“-”,正负号(以及与之对应使用的负正号)。四、省略符号1、如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数)。2、双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠)。
数学符号有: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ? ‖ ∠ ? ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ?∥α β γ δ ε δ ε ζ Γ。一、数学符号1、数学符号的发明及使用比数字要晚,但其数量却超过了数字。2、现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。二、运算符号1、如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。数学符号有太多比一一例举,比如有:1、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号||,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。2、关系符号如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“?”是包含于符号,“?”是包含符号,“|”表示“能整除”(例如a|b表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。3、结合符号如小括号“()”,中括号“[]”,大括号“}”,横线“—”4、性质符号如正号“+”,负号“-”,正负号等。5、省略符号如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),∵因为,∴所以等等。6、排列组合符号C组合数,A(或P)排列数,n元素的总个数,r参与选择的元素个数,!阶乘等。7、离散数学符号如?全称量词,?存在量词,├断定符(公式在L中可证),╞满足符(公式在E上有效,公式在E上可满足),﹁命题的“非”运算,如命题的否定为﹁p,∧命题的“合取”(“与”)运算,∨命题的“析取”(“或”,“可兼或”)运算,→命题的“条件”运算,?命题的“双条件”运算的等。
1 几何符号 ⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △ 2 代数符号 ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶ 3运算符号 × ÷ √ ± 4集合符号 ∪ ∩ ∈ 5特殊符号 ∑ π(圆周率) 6推理符号 |a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨ &; § ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮ ∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ? ⊙ ⊥ ⊿ ⌒ ℃ 指数0123:o123 符号 意义 ∞ 无穷大 PI 圆周率 |x| 函数的绝对值 ∪ 集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 自然对数 lg(x) 以2为底的对数 log(x) 常用对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 ∫f(x)δx 不定积分 ∫[a:b]f(x)δx a到b的定积分 [P] P为真等于1否则等于0 ∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求极限 f(z) f关于z的m阶导函数 C(n:m) 组合数,n中取m P(n:m) 排列数 m|n m整除n m⊥n m与n互质 a ∈ A a属于集合A #A 集合A中的元素个数 供参考

文章TAG:数学  曲线  分段函数  函数  数学曲线  lingo  
下一篇