本文目录一览

1,对数的定义域是什么

对数的定义域是大于0且不等于1,在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字的指数。一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。“log”是拉丁文logarithm(对数)的缩写,读作:[英][l?ɡ][美][l?ɡ, lɑɡ]。

对数的定义域是什么

2,对数的定义域是什么

对数定义域是:对数函数中,其中x自变量的取值范围。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。对数函数和指数的关系:同底的对数函数与指数函数互为反函数。当a>0且a≠1时,ax=N,x=㏒aN。关于y=x对称。对数函数的一般形式为y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。以上内容参考:百度百科-对数函数

对数的定义域是什么

3,对数的定义域是什么

对数的定义域:x∈(0,+∞),值域:y∈R。对数函数是函数的一类,所以讨论对数函数的性质就是讨论函数的性质。从函数性质开始:函数的第一个性质就是单调性,但函数的单调性是由底数a决定的,当a>1时,对数函数就是单调递增函数,当0。函数的其他性质就是奇偶性,周期性,对称性,但对数函数都不具备,所以在此就不做讨论了。对数函数特有的性质就是所有的对数函数必过一个点(0,1),即当x=0时,即y=1。产生历史:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent,有代表之意)。欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。

对数的定义域是什么


文章TAG:对数的定义域对数  定义  定义域  
下一篇