1,Affine为什么翻译成仿射看到这个仿射能让人想起什么东西吗 搜

Affine 是非维几何学(Fractal Geometry) 用语, 有类似之意; 仿射表示 其形状在任何尺寸都相似
是的再看看别人怎么说的。

Affine为什么翻译成仿射看到这个仿射能让人想起什么东西吗  搜

2,高等几何中仿射和欧氏怎么区分

欧氏几何是直角坐标表示,仿射几何就可不在乎长度和角度,仿射坐标系是直角坐标系的推广,将直角坐标系的基本向量的“垂直性和单位性”削弱成“不共线的两个向量”,则得到仿射坐标系。由仿射坐标系建立的平面称为仿射平面。
同问。。。

高等几何中仿射和欧氏怎么区分

3,仿射变换的原理

有限维的情况,每个仿射变换可以和一个向量b给出,它可以写作A和一个附加的列b。一个仿射变换对应于一个矩阵和一个向量的乘法,而仿射变换的复合对应于普通的矩阵乘法,只要加入一个额外的行到矩阵的底下,这一行全部是0除了最右边是一个1,而列向量的底下要加上一个1。

仿射变换的原理

4,什么是仿射非线性动态系统

非线性系统里最重要的模型是仿射非线性系统模型,这种系统最为常见。它对于状态向量X(t)是非线性的,对输入U却是线性的。而动态是指含有延迟或反馈环节。
仿射系统,即控制输入以线性形式出现在系统中。非仿射系统中,控制信号以非线性隐含的方式进入系统,影响系统的动特性。

5,什么是仿射函数

仿射函数即由由1阶多项式构成的函数,一般形式为 f (x) = A x + b,这里,A 是一个 m×k 矩阵,x 和 b 都是一个 m 向量,实际上反映了一种从 k 维到 m 维的空间映射关系。 设f是一个矢性(值)函数,若它可以表示为f(x1,x2,…,xn)=A1x1+A2x2+…+Anxn+b,其中Ai可以是标量,也可以是矩阵,则称f是仿射函数。 其中的特例是,标性(值)函数f(x)=ax+b,其中a、x、b都是标量。此时严格讲,只有b=0时,仿射函数才可以叫“线性函数”(“正比例”关系)。 就一般情形,函数f是仿射函数的充要条件是:对于任意两组向量x1,x2,…,xn与y1,y2,…,yn,对于任意0<=p<=1,如果f[px1+(1-p)y1,px2+(1-p)y2,…,pxn+(1-p)yn]==pf(x1,x2,…,xn)+(1-p)f(y1,y2,…,yn)。(“==”表示恒等) 一般称线性组合“p1x1+p2x2+…+pnxn,其中p1+p2+…+pn=1”为仿射组合;一般称所有pi>=0的仿射组合为凸组合。 其实一般意义上的仿射函数是一个矩阵函数,如果构成一个类似LMI的不等式,可以成为仿射矩阵不等式.
映射f:d→y对于x1,x2∈d,x1≠x2推出f(x1)≠f(x2),则是单射;对于对于y中任意一个元素都有原像与之对应,即是满射。注意:[1]谈单设,满射是针对一般映射而言的,函数是一个特殊的映射;[2]一旦规定了是函数,他肯定是一个满射,因为函数的要素:定义域,法则,值域。其中值域是像的集合,既然是像的集合,那么其中每一个元素都原像了。[3]典型的单设:单调函数,不是单射的函数:偶函数

6,什么是仿射集

不是存在,是任意
从基本数学概念上来说, 一个坐标系对应了一个仿射空间 (affine space) , 当矢量从一个坐标系变换到另一个坐标系时要进行线性变换 (linear transformation). 对点来说, 要进行仿射变换 (affine transformation). 这就是我们利用同源坐标的理由. 它能在对矢量进行线性变换的同时对点进行仿射变换. 坐标变换的基本操作就是将变换矩阵乘以矢量或点, 理解矩阵--2 上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学。大家口口相传,差不多人人都知道这句话。但是真知道这句话说的是什么意思的人,好像也不多。简而言之,在我们人类的经验里,运动是一个连续过程,从a点到b点,就算走得最快的光,也是需要一个时间来逐点地经过ab之间的路径,这就带来了连续性的概念。而连续这个事情,如果不定义极限的概念,根本就解释不了。古希腊人的数学非常强,但就是缺乏极限观念,所以解释不了运动,被芝诺的那些著名悖论(飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论)搞得死去活来。因为这篇文章不是讲微积分的,所以我就不多说了。有兴趣的读者可以去看看齐民友教授写的《重温微积分》。我就是读了这本书开头的部分,才明白“高等数学是研究运动的数学”这句话的道理。
对于Rn中的子集M, 存在x,y∈M,若有{(1一λ)x+λy |λ∈R } 成立,则称M是一仿射集。

7,仿射变换的示例

几种典型的仿射变换:public static AffineTransform getTranslateInstance(double tx, double ty)平移变换,将每一点移动到(x+tx, y+ty),变换矩阵为:[ 1 0 tx ][ 0 1 ty ][ 0 0 1 ](译注:平移变换是一种“刚体变换”,rigid-body transformation,中学学过的物理,都知道啥叫“刚体”吧,就是不会产生形变的理想物体,平移当然不会改变二维图形的形状。同理,下面的“旋转变换”也是刚体变换,而“缩放”、“错切”都是会改变图形形状的。)public static AffineTransform getScaleInstance(double sx, double sy)缩放变换,将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为:[ sx 0 0 ][ 0 sy 0 ][ 0 0 1 ]当sx=sy时,称为尺度缩放,sx不等于sy时,这就是我们平时所说的拉伸变换。public static AffineTransform getShearInstance(double shx, double shy)剪切变换,变换矩阵为:[ 1 shx 0 ][ shy 1 0 ][ 0 0 1 ]相当于一个横向剪切与一个纵向剪切的复合[ 1 0 0 ][ 1 shx 0 ][ shy 1 0 ][ 0 1 0 ][ 0 0 1 ][ 0 0 1 ](译注:“剪切变换”又称“错切变换”,指的是类似于四边形不稳定性那种性质,街边小商店那种铁拉门都见过吧?想象一下上面铁条构成的菱形拉动的过程,那就是“错切”的过程。)public static AffineTransform getRotateInstance(double theta)

文章TAG:仿射仿射  为什么  什么  
下一篇